The role of anthropogenic and natural factors in shaping the geochemical evolution of groundwater in the Subei Lake basin, Ordos energy base, Northwestern China.

Sci Total Environ

Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A, Datun Road, Chaoyang District, Beijing 100101, China.

Published: December 2015

Groundwater resources are increasingly exploited for industrial and agricultural purposes in many arid regions globally, it is urgent to gain the impact of the enhanced anthropogenic pressure on the groundwater chemistry. The aim of this study was to acquire a comprehensive understanding of the evolution of groundwater chemistry and to identify the impact of natural and anthropogenic factors on the groundwater chemistry in the Subei Lake basin, Northwestern China. A total of 153 groundwater samples were collected and major ions were measured during the three campaigns (August and December 2013, May 2014). At present, the major hydrochemical facies in unconfined groundwater are Ca-Mg-HCO3, Ca-Na-HCO3, Na-Ca-HCO3, Na-HCO3, Ca-Mg-SO4 and Na-SO4-Cl types, while the main hydrochemical facies in confined groundwater are Ca-Mg-HCO3, Ca-Na-HCO3, Na-Ca-HCO3, Ca-HCO3 and Na-HCO3 types. Relatively greater seasonal variation can be observed in the chemical constituents of confined groundwater than that of unconfined groundwater. Rock weathering predominates the evolution of groundwater chemistry in conjunction with the cation exchange, and the dissolution/precipitation of gypsum, halite, feldspar, calcite and dolomite are responsible for the chemical constituents of groundwater. Anthropogenic activities can be classified as: (1) groundwater overexploitation; (2) excessive application of fertilizers in agricultural areas. Due to intensive groundwater pumping, the accelerated groundwater mineralization resulted in the local changes in hydrochemical facies of unconfined groundwater, while the strong mixture, especially a large influx of downward leakage from the unconfined aquifer into the confined aquifer, played a vital role in the fundamental variation of hydrochemical facies in confined aquifer. The nitrate contamination is mainly controlled by the local hydrogeological settings coupled with the traditional flood irrigation. The deeper insight into geochemical evolution of groundwater obtained from this study can be beneficial to improving groundwater management for sustainable development in the rapidly industrialized areas.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2015.08.057DOI Listing

Publication Analysis

Top Keywords

groundwater
18
evolution groundwater
16
groundwater chemistry
16
hydrochemical facies
16
unconfined groundwater
12
geochemical evolution
8
subei lake
8
lake basin
8
northwestern china
8
facies unconfined
8

Similar Publications

Self-powered photoelectrochemical sensor based on molecularly imprinted polymer-coupled CBFO photocathode and AgS/SnS photoanode for ultrasensitive dimethoate sensing.

Anal Chim Acta

February 2025

CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China. Electronic address:

Dimethoate (DIM) is one of the most extensively applied organophosphorus pesticides (OPs), which is used to boost farm productivity due to its high insecticidal efficacy. However, the excessive use of DIM can result in the extensive contamination of soil, groundwater and food. Monitoring of DIM in environmental and food samples is crucial in view of its potential health risks and environmental hazards from excessive residues.

View Article and Find Full Text PDF

Anaerobic and aerobic sequential process, a promising strategy for breaking the stagnate of biological reductive dechlorination.

Chemosphere

January 2025

MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.

Trichloroethylene (TCE) is a common chlorinated hydrocarbon contaminant in soil and groundwater, and reductive dechlorination is a biological remediation. However, the TCE reductive dechlorination often stagnates in the stage of cis-1,2-dichloroethylene (cDCE) and chloroethylene (VC). Anaerobic/aerobic sequential degradation provides a new approach for the complete detoxification of TCE, while there has been no systematic summary of bacteria, enzymes, and pathways in the synergistic process.

View Article and Find Full Text PDF

Mechanisms controlling spatial variability of geogenic ammonium in coastal aquifers: Insights from Holocene sedimentary evolution.

Water Res

January 2025

Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, Wuhan 430078, China.

The contamination of groundwater with geogenic ammonium (NH) across various geological backgrounds has garnered significant attention, particularly in coastal aquifer systems. However, there remains a gap in our understanding of the mechanisms governing the spatial variability of NH in coastal groundwater at a macroscopic scale. In this study, we collected the sediment samples from two boreholes corresponding to high-NH-N and low-NH-N groundwater.

View Article and Find Full Text PDF

A signal amplifying MOF-based probe:on-site and ultrasensitive dual-channel portable detection of Hg in groundwater through a fluorimetrically and RGB-based sensing assay.

Talanta

January 2025

State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, Gansu, 730000, People's Republic of China. Electronic address:

Mercury (II) ions (Hg) are a significant source of heavy metal contamination in groundwater, posing a serious threat to human health and the environment. Therefore, there is an urgent need for the development of a new detection technique with high sensitivity for monitoring Hg in contaminated groundwater. Here, we developed a signal amplifying MOF-based probe (NXS@ZIF-8) for on-site and ultrasensitive dual-channel portable detection of Hg in groundwater.

View Article and Find Full Text PDF

Dissolved beryllium (< 1 kDa) mobilized as a major element in groundwater in legacy mine waste.

Environ Pollut

January 2025

Applied Geochemistry, Department of Civil, Environmental and Natural Resource Engineering, Luleå University of Technology, Luleå, Sweden.

Research regarding the geochemistry of beryllium (Be) in terrestrial environments is hindered by its high toxicity to humans and the low concentrations normally occurring in the environment. Although Be is considered an immobile element, extremely high dissolved concentrations have been detected in groundwater in the legacy Tailings Storage Facility (TSF) of Smaltjärnen, Sweden. Therefore, a detailed study was conducted to determine physiochemical parameters affecting the speciation of Be in the groundwater.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!