Brackish groundwater (BGW) is increasingly used for water supplies where fresh water is scarce, but the distribution and availability of such resources have not been characterized at the national scale in the United States since the 1960s. Apart from its distribution and accessibility, BGW usability is a function of the chemical requirements of the intended use, chemical characteristics of the resource, and treatment options to make the resource compatible with the use. Here, we discuss relations between these three chemical factors using national-scale examples and local case studies. In a preliminary compilation of BGW data in the United States, five water types accounted for the major-ion composition of 70% of samples. PHREEQC calculations indicate that 57-77% of samples were oversaturated with respect to barite, calcite, or chalcedony. In the study, 5-14% of samples had concentrations of arsenic, fluoride, nitrate, or uranium that exceeded drinking-water standards. In case studies of the potential use of BGW for drinking water, irrigation, and hydraulic fracturing, PHREEQC simulations of a hypothetical treatment process resembling reverse osmosis (RO) showed that BGW had the potential to form various assemblages of mineral deposits (scale) during treatment that could adversely affect RO membranes. Speciation calculations showed that most boron in the irrigation example occurred as boric acid, which has relatively low removal efficiency by RO. Results of this preliminary study indicate that effective national or regional assessments of BGW resources should include geochemical characterizations that are guided in part by specific use and treatment requirements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gwat.12367 | DOI Listing |
ACS Omega
January 2025
Department of Nanoscience, Joint School of Nanoscience & Nanoengineering, University of North Carolina at Greensboro, 1907 East Gate City Blvd, Greensboro, North Carolina 27401, United States.
An innovative biosorbent-based water remediation unit could reduce the demand for freshwater while protecting the surface and groundwater sources by using saline water resources, such as brine, brackish water, and seawater for irrigation. Herein, for the first time, we introduce a simple, rapid, and cost-effective iron(III)-tannate biosorbent-based technology, which functions as a stand-alone fixed-bed filter system for the treatment of salinity, heavy-metal contaminants, and pathogens present in a variety of water resources. Our approach presents a streamlined, cost-efficient, energy-saving, and sustainable avenue for water treatment, distinct from current adsorption desalination or conventional membrane techniques supplemented with chemical and UV treatments for disinfection.
View Article and Find Full Text PDFBMC Vet Res
January 2025
Aquaculture Division, National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt.
With freshwater resources becoming scarce worldwide, mariculture is a promising avenue to sustain aquaculture development, especially by incorporating brackish and saline groundwater (GW) use into fish farming. A 75-day rearing trial was conducted to evaluate fish growth, immune response, overall health, and water quality of Chelon ramada cultured in brackish GW and fed on a basal diet (BD) augmented with rosemary oil (RO) or RO + zymogen forte™ (ZF) as an anti-flatulent. Five treatments were administrated in triplicate: T1: fish-fed BD without additives (control group); T2: fish-fed BD + 0.
View Article and Find Full Text PDFMicrob Ecol
January 2025
MikroIker Research Group, Immunology, Microbiology and Parasitology Department, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de La Universidad 7, 01006, Vitoria-Gasteiz, Spain.
The Añana Salt Valley (northern Spain) is a continental saltern consisting of a series of natural springs that have been used for salt production for at least 7000 years. This habitat has been relatively understudied; therefore, prokaryotic diversity was investigated through Illumina-based 16S rRNA gene sequencing to determine if the waters within the valley exhibit distinctive microbiological characteristics. Two main types of water were found in the valley: salty (approximately 200 g/L salinity) from the diapiric structure and brackish (≤ 20 g/L salinity) from shallow streams.
View Article and Find Full Text PDFMicroorganisms
November 2024
School of Earth System Science, Tianjin University, Tianjin 300072, China.
Contained arsenic (As) and unsafe brackish groundwater irrigation can lead to serious As pollution and increase the ecological risk in cultivated soils. However, little is known about how Fe oxides and microbes affect As migration during soil irrigation processes involving arsenic-contaminated brackish groundwater. In this study, the samples (porewater and soil) were collected through the dynamic soil column experiments to explore the As migration process and its effect factors during soil irrigation.
View Article and Find Full Text PDFEnviron Monit Assess
December 2024
US Geological Survey, Water Resources Mission Area, Moffett Field, CA, USA.
The US Geological Survey (USGS) is selecting and prioritizing basins, known as Integrated Water Science basins, for monitoring and intensive study. Previous efforts to aid in this selection process include a scientifically defensible and quantitative assessment of basins facing human-caused water resource challenges (Van Metre et al. in Environmental Monitoring and Assessment, 192(7), 458 2020).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!