Objective: To verify whether the MALDI TOF MS method can be used for rapid identification of selected zoonotic bacterial pathogens isolated from various types of materials in the real conditions of routine laboratory work.
Material And Methods: Between August 2010 and April 2015, the Bruker's MALDI TOF MS system was used for 4,174 identifications of selected zoonotic bacterial pathogens (Salmonella spp., Campylobacter jejuni, Campylobacter coli, Listeria monocytogenes, Yersinia enterocolitica, Yersinia pseudotuberculosis, Francisella tularensis, Brucella melitensis, Brucella suis and Cronobacter sakazakii). The samples were prepared for the test by simply mixing a bacterial culture with a matrix on a steel target plate. The results were evaluated with a standard protocol of the system using the MALDI Biotyper software under operating conditions.
Results: In 74.8 % of the tested isolates of the above bacterial species, the identification scores ranged between 2 and 3, which is satisfactory for result interpretation in routine practice. Acceleration of identification of Campylobacter spp. and Listeria monocytogenes by testing suspicious cultures obtained directly from selective-diagnostic media decreased the identification scores in these cases.
Conclusion: MALDI TOF MS is a suitable and rapid method for identification of the selected zoonotic bacterial pathogens.
Download full-text PDF |
Source |
---|
Front Immunol
January 2025
Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, China.
Introduction: Brucellosis is a widespread zoonotic disease that poses a considerable challenge to global public health. Existing diagnostic methods for this condition, such as serological assays and bacterial culture, encounter difficulties due to their limited specificity and high operational complexity. Therefore, there is an urgent need for the development of enhanced diagnostic approaches for brucellosis.
View Article and Find Full Text PDFJ Infect
January 2025
Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States.
Background: Pneumococcal conjugate vaccines (PCVs) introduced in childhood national immunization programs lowered vaccine-type invasive pneumococcal disease (IPD), but replacement with non-vaccine-types persisted throughout the PCV10/13 follow-up period. We assessed PCV10/13 impact on pneumococcal meningitis incidence globally.
Methods: The number of cases with serotyped pneumococci detected in cerebrospinal fluid and population denominators were obtained from surveillance sites globally.
Sci Rep
January 2025
Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St, 02-786, Warsaw, Poland.
Streptococcus dysgalactiae (S. dysgalactiae ) is a common pathogen of humans and various animals. However, the phylogenetic position of animal S.
View Article and Find Full Text PDFBr J Hosp Med (Lond)
January 2025
Department of Rheumatism and Immunity, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.
Patients receiving kidney transplant experience immunosuppression, which increases the risk of bacterial, viral, fungal, and parasitic infections. Q fever is a potentially fatal infectious disease that affects immunocompromised renal transplant recipients and has implications in terms of severe consequences for the donor's kidney. A patient with acute Q fever infection following kidney transplantation was admitted to the Tsinghua Changgung Hospital in Beijing, China, in March 2021.
View Article and Find Full Text PDFPathogens
January 2025
Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
Pneumonia caused by infection (PCP) is a potentially life-threatening illness, particularly affecting the immunocompromised. The past two decades have shown an increase in PCP incidence; however, the underlying factors that promote disease severity and fatality have yet to be fully elucidated. Recent evidence suggests that the microbiota of the respiratory tract may play a role in stimulating or repressing pulmonary inflammation, as well as the progression of both bacterial and viral pneumonia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!