This paper reviews the utility and availability of biological and ecological traits for marine species so as to prioritise the development of a world database on marine species traits. In addition, the 'status' of species for conservation, that is, whether they are introduced or invasive, of fishery or aquaculture interest, harmful, or used as an ecological indicator, were reviewed because these attributes are of particular interest to society. Whereas traits are an enduring characteristic of a species and/or population, a species status may vary geographically and over time. Criteria for selecting traits were that they could be applied to most taxa, were easily available, and their inclusion would result in new research and/or management applications. Numerical traits were favoured over categorical. Habitat was excluded as it can be derived from a selection of these traits. Ten traits were prioritized for inclusion in the most comprehensive open access database on marine species (World Register of Marine Species), namely taxonomic classification, environment, geography, depth, substratum, mobility, skeleton, diet, body size and reproduction. These traits and statuses are being added to the database and new use cases may further subdivide and expand upon them.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4548538 | PMC |
http://dx.doi.org/10.7717/peerj.1201 | DOI Listing |
Many sharks, rays and skates are highly threatened and vulnerable to overexploitation, as such reliable monitoring of elasmobranchs is key to effective management and conservation. The mobile and elusive nature of these species makes monitoring challenging, particularly in temperate waters with low visibility. Environmental DNA (eDNA) methods present an opportunity to study these species in the absence of visual identification or invasive techniques.
View Article and Find Full Text PDFData Brief
February 2025
Department of Ecology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
Incorporating ecological connectivity into spatial conservation planning is increasingly recognized as a key strategy to facilitate species movements, especially under changing environmental conditions. However, obtaining connectivity data is challenging, especially in the marine realm. Sea currents are essential for exploring marine structural connectivity, but transforming sea current data into spatial connectivity matrices involves complex and resource-intensive processing steps to ensure accuracy and usability.
View Article and Find Full Text PDFZookeys
January 2025
Steinhart Aquarium, California Academy of Sciences, San Francisco, CA 94118, USA.
Herein, we describe a new species of perchlet found at depths of 100-125 meters in mesophotic coral ecosystems of the Maldives in the Indian Ocean. is unique in both morphology and coloration. The following combination of characters distinguishes it from all known congeners: dorsal fin X, 15; anal-fin rays III, 7; pectoral-fin rays 13 | 13 (13 | 12), all unbranched; principal caudal-fin rays 9 + 8; lateral line complete with 30-32 tubed scales; gill rakers 5 + 12; circumpeduncular scales 11-12; and absence of antrorse or retrorse spines on ventral margin of preopercle.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
The establishment of a feeding regimen for cladocerans is crucial in contemporary aquaculture due to their significance as nutrient-rich live feeds for various aquatic species. Three experiments were conducted to optimize the growth and reproduction rates of cladocerans ( sp. and sp.
View Article and Find Full Text PDFJ Anim Ecol
January 2025
Environmental Defense Fund, Seattle, Washington, USA.
For similar species to co-occur in places where resources are limited, they need to adopt strategies that partition resources to reduce competition. Our understanding of the mechanisms behind resource partitioning among sympatric marine predators is evolving, but we lack a clear understanding of how environmental change is impacting these dynamics. We investigated spatial and trophic resource partitioning among three sympatric seabirds with contrasting biological characteristics: greater crested terns Thalasseus bergii (efficient flyer, limited diver, and preference for high quality forage fish), little penguins Eudyptula minor (flightless, efficient diver, and preference for high quality forage fish) and silver gulls Chroicocephalus novaehollandiae (efficient flyer, limited diver and generalist diet).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!