Positive Selection in CD8+ T-Cell Epitopes of Influenza Virus Nucleoprotein Revealed by a Comparative Analysis of Human and Swine Viral Lineages.

J Virol

Department of Genome Sciences, University of Washington, Seattle, Washington, USA Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA

Published: November 2015

Unlabelled: Numerous experimental studies have demonstrated that CD8(+) T cells contribute to immunity against influenza by limiting viral replication. It is therefore surprising that rigorous statistical tests have failed to find evidence of positive selection in the epitopes targeted by CD8(+) T cells. Here we use a novel computational approach to test for selection in CD8(+) T-cell epitopes. We define all epitopes in the nucleoprotein (NP) and matrix protein (M1) with experimentally identified human CD8(+) T-cell responses and then compare the evolution of these epitopes in parallel lineages of human and swine influenza viruses that have been diverging since roughly 1918. We find a significant enrichment of substitutions that alter human CD8(+) T-cell epitopes in NP of human versus swine influenza virus, consistent with the idea that these epitopes are under positive selection. Furthermore, we show that epitope-altering substitutions in human influenza virus NP are enriched on the trunk versus the branches of the phylogenetic tree, indicating that viruses that acquire these mutations have a selective advantage. However, even in human influenza virus NP, sites in T-cell epitopes evolve more slowly than do nonepitope sites, presumably because these epitopes are under stronger inherent functional constraint. Overall, our work demonstrates that there is clear selection from CD8(+) T cells in human influenza virus NP and illustrates how comparative analyses of viral lineages from different hosts can identify positive selection that is otherwise obscured by strong functional constraint.

Importance: There is a strong interest in correlates of anti-influenza immunity that are protective against diverse virus strains. CD8(+) T cells provide such broad immunity, since they target conserved viral proteins. An important question is whether T-cell immunity is sufficiently strong to drive influenza virus evolution. Although many studies have shown that T cells limit viral replication in animal models and are associated with decreased symptoms in humans, no studies have proven with statistical significance that influenza virus evolves under positive selection to escape T cells. Here we use comparisons of human and swine influenza viruses to rigorously demonstrate that human influenza virus evolves under pressure to fix mutations in the nucleoprotein that promote escape from T cells. We further show that viruses with these mutations have a selective advantage since they are preferentially located on the "trunk" of the phylogenetic tree. Overall, our results show that CD8(+) T cells targeting nucleoprotein play an important role in shaping influenza virus evolution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4645657PMC
http://dx.doi.org/10.1128/JVI.01571-15DOI Listing

Publication Analysis

Top Keywords

influenza virus
36
positive selection
20
cd8+ cells
20
cd8+ t-cell
16
t-cell epitopes
16
human influenza
16
selection cd8+
12
influenza
12
human swine
12
swine influenza
12

Similar Publications

Three hospitals implemented molecular point-of-care tests (POCTs) to screen patients for SARS-CoV-2 infection upon admission during the 2021/2022 influenza season, which in Belgium lasted from January to April 2022. The samples were simultaneously tested for influenza A/B. Influenza positivity at admission was examined in relation to patient characteristics and symptomatology.

View Article and Find Full Text PDF

To evaluate the performance of three rapid influenza diagnostic tests (RIDTs) for detecting influenza A and B viruses compared to RT-PCR. A total of 291 subjects with acute respiratory infections were enrolled. Respiratory specimens were collected and tested for influenza A and B viruses using three RIDTs.

View Article and Find Full Text PDF

Subacute thyroiditis - Is it really linked to viral infection? Retrospective hospital patient registry study.

J Clin Endocrinol Metab

January 2025

Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.

Objective: Subacute thyroiditis (SAT) is a painful inflammatory disorder of the thyroid gland, which - after a phase of thyrotoxicosis - leads to transient, or less frequently permanent hypothyroidism. Apart from a strong association with specific HLA alleles, the causes are uncertain. Viral disease has been hypothesised as a trigger, with Enteroviruses, namely Echoviruses and Coxsackieviruses, showing a seasonal distribution that coincides with the incidence of SAT.

View Article and Find Full Text PDF

Background: We continue to struggle with the prevention and treatment of the influenza virus. The 2009 swine flu pandemic, caused by the H1N1 strain of influenza A, resulted in numerous fatalities. The threat of influenza remains a significant concern for global health, and the development of novel drugs targeting these viruses is highly desirable.

View Article and Find Full Text PDF

TRIF-TAK1 signaling suppresses caspase-8/3-mediated GSDMD/E activation and pyroptosis in influenza A virus-infected airway epithelial cells.

iScience

January 2025

College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, P.R. China.

Pyroptosis plays an important role in attracting innate immune cells to eliminate infected niches. Our study focuses on how influenza A virus (IAV) infection triggers pyroptosis in respiratory epithelial cells. Here, we report that IAV infection induces pyroptosis in a human and murine airway epithelial cell line.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!