Comparison of the efficiencies of attached- versus suspended-growth SBR systems in the treatment of recycled paper mill wastewater.

J Environ Manage

Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.

Published: November 2015

The complexity of residual toxic organics from biologically treated effluents of pulp and paper mills is a serious concern. To date, it has been difficult to choose the best treatment technique because each of the available options has advantages and drawbacks. In this study, two different treatment techniques using laboratory-scale aerobic sequencing batch reactors (SBRs) were tested with the same real recycled paper mill effluent to evaluate their treatment efficiencies. Two attached-growth SBRs using granular activated carbon (GAC) with and without additional biomass and a suspended-growth SBR were used in the treatment of real recycled paper mill effluent at a chemical oxygen demand (COD) level in the range of 800-1300 mg/L, a fixed hydraulic retention time of 24 h and a COD:N:P ratio of approximately 100:5:1. The efficiency of this biological treatment process was studied over a 300-day period. The six most important wastewater quality parameters, namely, chemical oxygen demand (COD), turbidity, ammonia (expressed as NH3-N), phosphorus (expressed as PO4(3)-P), colour, and suspended solids (SS), were measured to compare the different treatment techniques. It was determined that these processes were able to almost completely and simultaneously eliminate COD (99%) and turbidity (99%); the removals of NH3-N (90-100%), PO4(3)-P (66-78%), colour (63-91%), and SS (97-99%) were also sufficient. The overall performance results confirmed that an attached-growth SBR system using additional biomass on GAC is a promising configuration for wastewater treatment in terms of performance efficiency and process stability under fluctuations of organic load. Hence, this hybrid system is recommended for the treatment of pulp and paper mill effluents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2015.08.012DOI Listing

Publication Analysis

Top Keywords

paper mill
16
recycled paper
12
treatment
9
suspended-growth sbr
8
pulp paper
8
treatment techniques
8
real recycled
8
mill effluent
8
additional biomass
8
chemical oxygen
8

Similar Publications

Argan (Argania spinosa (L.) Skeels) is an endangered agroforestry species known for producing one of most expensive and sought-after oils in the world. Argan forests are a suitable habitat for medfly (Ceratitis capitata).

View Article and Find Full Text PDF

Abies alba Mill. is a prominent European tree species predominantly inhabiting cool and humid montane environments. However, paleoecological evidence reveals that during the Eemian and mid-Holocene, A.

View Article and Find Full Text PDF

Practical advice in the development of a lyophilized protein drug product.

Antib Ther

January 2025

Formulation Development Group, Regeneron Pharmaceuticals Inc, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA.

The development of lyophilized protein drug products is a critical and complex task in the pharmaceutical industry, requiring a comprehensive understanding of the myriad of factors affecting product quality, stability, and the efficiency and robustness of the lyophilization process. This review offers practical advice on the critical aspects of lyophilized protein drug product development. Practical considerations across both the early and late stages of development are discussed, underscoring the necessity of a strategic approach from initial development through to commercialization.

View Article and Find Full Text PDF

The role of membrane technology in palm oil mill effluent (POME) decontamination: Current trends and future prospects.

J Environ Manage

February 2025

Chemical Engineering Department, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia; Research Center for Biosciences and Biotechnology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia.

This article reviews the role of membrane systems in treating palm oil mill effluent (POME), a waste generated by the palm industry. The review focuses on various membrane systems such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO), highlighting their effectiveness in removing pollutants and recovering water. Special attention is given to hybrid systems integrating membrane bioreactors (MBRs) and other advanced processes to enhance fouling control, improve water quality, and promote sustainability.

View Article and Find Full Text PDF

Bacterial community dynamics in a biofilm-based process after electro-assisted Fenton pre-treatment of real olive mill wastewater.

Bioresour Technol

January 2025

Water Science and Technology Group (WaSTe), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy. Electronic address:

In this work, the effect of the electro-assisted Fenton (EAF) process on the bacterial community of a moving bed biofilm reactor (MBBR) for olive mill wastewater (OMW) co-treatment with urban wastewater (UWW) was investigated. According to metagenomic analysis, pre-treatment by EAF, while removing total phenols (TPHs) up to 84 % ± 3 % and improving biodegradability of OMW from 0.38 to 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!