We examine the dynamics and function of the apical scaffolding protein E3KARP/NHERF2, which consists of two PDZ domains and a tail containing an ezrin-binding domain. The exchange rate of E3KARP is greatly enhanced during mitosis due to phosphorylation at Ser-303 in its tail region. Whereas E3KARP can substitute for the function of the closely related scaffolding protein EBP50/NHERF1 in the formation of interphase microvilli, E3KARP S303D cannot. Moreover, the S303D mutation enhances the in vivo dynamics of the E3KARP tail alone, whereas in vitro the interaction of E3KARP with active ezrin is unaffected by S303D, implicating another factor regulating dynamics in vivo. A-Raf is found to be required for S303 phosphorylation in mitotic cells. Regulation of the dynamics of EBP50 is known to be dependent on its tail region but modulated by PDZ domain occupancy, which is not the case for E3KARP. Of interest, in both cases, the mechanisms regulating dynamics involve the tails, which are the most diverged region of the paralogues and probably evolved independently after a gene duplication event that occurred early in vertebrate evolution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4603932 | PMC |
http://dx.doi.org/10.1091/mbc.E15-07-0498 | DOI Listing |
Tissue Eng Regen Med
January 2025
Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, Fujian, China.
Background: The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
Methods: We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
J Med Chem
January 2025
Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, Frankfurt am Main 60596, Germany.
The leukotriene B4 receptor 2 (BLT2) is a G-protein coupled receptor, which is endogenously activated by 12()-hydroxyheptadeca-5Z,8E,10E-trienoic acid (12-HHT). BLT2 is gaining attention as a potential therapeutic target involved in various pathologies including diabetic wound healing, ophthalmic diseases, and colitis. However, validation of BLT2 as drug target requires chemical probes and pharmacological tools which will allow for application in vivo.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Chemistry, CRI Center for Chemical Proteomics, Seoul National University, Seoul 08826, Korea.
We developed a design strategy focusing on pivotal secondary structural motifs-α-helix, β-strand, and β-turn-critical for PPI recognition, using a common core skeleton. The resulting peptide-inspired pyrimidodiazepine scaffolds were further subjected to comprehensive phenotypic screening to evaluate their efficacy. Our strategy offers a transformative approach to developing small-molecule PPI modulators with broad therapeutic potential.
View Article and Find Full Text PDFMol Nutr Food Res
January 2025
Department for Sustainability, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Roma, Italy.
The effect of a mucilage extracted from Opuntia ficus-indica (L.) Mill (OFI) cladodes was tested in lipopolysaccharide (LPS)-challenged HepG2 hepatocarcinoma cells, through a combined in vitro-in silico approach. The OFI mucilage was characterized by gas chromatography-mass spectrometry and liquid chromatography-high resolution mass spectrometry.
View Article and Find Full Text PDFAm J Cancer Res
December 2024
Department of Pharmacology and Toxicology, Medical College of Wisconsin Milwaukee, Wisconsin 53226, USA.
Cancer cell overexpresses numerus proteins, however, how these up-regulated proteins, especially those enzymatically opposite kinases and phosphatases, act together to promote oncogenesis is unknown. Here, we reported that protein tyrosine phosphatase H1 (PTPH1) is a scaffold protein for receptor tyrosine kinase (HER2) to potentiate breast tumorigenesis. PTPH1 utilizes its PDZ domain to bind HER2, p38γ, PBK, and YAP1 and to increase HER2 nuclear translocation, stemness, and oncogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!