Oxidative stress and antioxidant status in a lizard Phrynocephalus vlangalii at different altitudes or acclimated to hypoxia.

Comp Biochem Physiol A Mol Integr Physiol

School of Life Sciences, Lanzhou University, 222 Tian Shui South Road, Lanzhou, 730000, PR China. Electronic address:

Published: December 2015

Oxidative stress is a major challenge for the survival of animals living on plateaus; however, lifelong exposure to high altitudes could generate certain adaptabilities which make them more tolerant to these environments. The aim of the present study was to compare the oxidative stress and antioxidant status between low altitude (LA, 2900m) and high altitude (HA, 4200m) populations of Phrynocephalus vlangalii. The results showed that malondialdehyde levels in the HA populations decreased significantly in the brain, but markedly increased in the muscle and had no significant difference in the liver compared to LA populations. The activity of catalase in the brain was much higher in HA than LA. Except for total antioxidant capacity and glutathione reductase, other antioxidants were similar between the two populations in livers. By contrast, the levels of most antioxidants in muscle decreased markedly with elevation. We also explored the effects of hypoxia on oxidative damage and antioxidant defenses in P. vlangalii. The lizards were acclimated in a simulated hypoxic chamber (15% O2 and 8% O2) for 6weeks. The results showed that in the 8% O2 group, the levels of malondialdehyde, catalase, glutathione and total antioxidant capacity in the brain, and malondialdehyde, catalase and superoxide dismutase in the liver were significantly higher than the 15% O2 group. These findings indicate that in this species the oxidative stress and antioxidant capacity are subject to altitude and hypoxia and this lizard may have acquired some ability to deal with the oxidative stress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpa.2015.08.013DOI Listing

Publication Analysis

Top Keywords

oxidative stress
20
stress antioxidant
12
antioxidant capacity
12
antioxidant status
8
phrynocephalus vlangalii
8
hypoxia oxidative
8
total antioxidant
8
malondialdehyde catalase
8
oxidative
6
antioxidant
6

Similar Publications

5-Fluorouracil (5-FU) is a chemotherapeutic that is used to treat solid tumors. However, 5-FU is associated with several side effects, including cardiotoxicity. Considering the importance of the intrinsic cardiac nervous system (ICNS) for the heart and that little is known about effects of 5-FU on this nervous system plexus, the purpose of the present study was to evaluate effects 5-FU at a low dose on the ICNS and oxidative and inflammatory effects in the heart in Wistar rats.

View Article and Find Full Text PDF

Dihydromyricetin (Dih), a naturally occurring flavonoid, has been identified to exert a protective effect against ischemia/reperfusion injury. However, the detailed mechanisms remain unclear. Here we investigated the biological role of Dih in preventing hypoxia/reoxygenation (H/R) injury in cardiomyocytes.

View Article and Find Full Text PDF

Fluoride (F), as a natural element found in a wide range of sources such as water and certain foods, has been proven to be beneficial in preventing dental caries, but concerns have been raised regarding its potential deleterious effects on overall health. Sodium fluoride (NaF), another form of F, has the ability to accumulate in reproductive organs and interfere with hormonal regulation and oxidative stress pathways, contributing to reproductive toxicity. While the exact mechanisms of F-induced reproductive toxicity are not fully understood, this review aims to elucidate the mechanisms involved in testicular and ovarian injury.

View Article and Find Full Text PDF

Mitochondrial Dysfunction in HFpEF: Potential Interventions Through Exercise.

J Cardiovasc Transl Res

January 2025

Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.

HFpEF is a prevalent and complex type of heart failure. The concurrent presence of conditions such as obesity, hypertension, hyperglycemia, and hyperlipidemia significantly increase the risk of developing HFpEF. Mitochondria, often referred to as the powerhouses of the cell, are crucial in maintaining cellular functions, including ATP production, intracellular Ca regulation, reactive oxygen species generation and clearance, and the regulation of apoptosis.

View Article and Find Full Text PDF

CHD6 has poly(ADP-ribose)- and DNA-binding domains and regulates PARP1/2-trapping inhibitor sensitivity via abasic site repair.

Nat Commun

January 2025

Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.

To tolerate oxidative stress, cells enable DNA repair responses often sensitive to poly(ADP-ribose) (PAR) polymerase 1 and 2 (PARP1/2) inhibition-an intervention effective against cancers lacking BRCA1/2. Here, we demonstrate that mutating the CHD6 chromatin remodeler sensitizes cells to PARP1/2 inhibitors in a manner distinct from BRCA1, and that CHD6 recruitment to DNA damage requires cooperation between PAR- and DNA-binding domains essential for nucleosome sliding activity. CHD6 displays direct PAR-binding, interacts with PARP-1 and other PAR-associated proteins, and combined DNA- and PAR-binding loss eliminates CHD6 relocalization to DNA damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!