Anaesthesia for deep brain stimulation: a review.

Curr Opin Anaesthesiol

aDepartment of Neurosurgery bDepartment of Anesthesia, Yale School of Medicine, Yale-New Haven Medical Center, New Haven, Connecticut, USA.

Published: October 2015

Purpose Of Review: Deep brain stimulation (DBS) is a well tolerated and efficacious surgical treatment for movement disorders, chronic pain, psychiatric disorder, and a growing number of neurological disorders. Given that the brain targets are deep and small, accurate electrode placement is commonly accomplished by utilizing frame-based systems. DBS electrode placement is confirmed by microlectrode recordings and macrostimulation to optimize and verify target placement. With a reliance on electrophysiology, proper anaesthetic management is paramount to balance patient comfort without interfering with neurophysiology.

Recent Findings: To achieve optimal pain control, generous amounts of local anaesthesia are instilled into the planned incision. During the opening and closing states, conscious sedation is the prevailing method of anaesthesia. The preferred agents are dexmedetomidine, propofol, and remifentanil, as they affect neurocognitive testing the least, and shorter acting. All the agents are turned off 15-30 min prior to microelectrode recording. Dexmedetomidine has gained popularity in DBS procedures, but has some considerations at higher doses. The addition of ketamine is helpful for pediatric cases.

Summary: DBS is a robust surgical treatment for a variety of neurological disorders. Appropriate anaesthetic agents that achieve patient comfort without interfering with electrophysiology are paramount.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4663044PMC
http://dx.doi.org/10.1097/ACO.0000000000000230DOI Listing

Publication Analysis

Top Keywords

deep brain
8
brain stimulation
8
surgical treatment
8
neurological disorders
8
electrode placement
8
patient comfort
8
comfort interfering
8
anaesthesia deep
4
stimulation review
4
review purpose
4

Similar Publications

Tissue clearing combined with high-resolution confocal imaging is a cutting-edge approach for dissecting the three-dimensional (3D) architecture of tissues and deciphering cellular spatial interactions under physiological and pathological conditions. Deciphering the spatial interaction of leptin receptor-expressing (LepR) stromal cells with other compartments in the bone marrow is crucial for a deeper understanding of the stem cell niche and the skeletal tissue. In this study, we introduce an optimized protocol for the 3D analysis of skeletal tissues, enabling the visualization of hematopoietic and stromal cells, especially LepR stromal cells, within optically cleared bone hemisections.

View Article and Find Full Text PDF

Development and routine implementation of deep learning algorithm for automatic brain metastases segmentation on MRI for RANO-BM criteria follow-up.

Neuroimage

January 2025

Medical Physics Department, Centre François Baclesse, 14000 Caen, France; Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, 14000 Caen, France. Electronic address:

Rationale And Objectives: The RANO-BM criteria, which employ a one-dimensional measurement of the largest diameter, are imperfect due to the fact that the lesion volume is neither isotropic nor homogeneous. Furthermore, this approach is inherently time-consuming. Consequently, in clinical practice, monitoring patients in clinical trials in compliance with the RANO-BM criteria is rarely achieved.

View Article and Find Full Text PDF

The role of sleep quality in mediating the relationship between habenula volume and resilience.

Psychiatry Res

January 2025

Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Japan; Artificial Intelligence Ethics and Society Team, RIKEN Center for Advanced Intelligence Project, Saitama, Japan; The General Research Division, Osaka University Research Center on Ethical, Legal and Social Issues, Kyoto, Japan. Electronic address:

Background: Our human volumetric MRI study (Dai et al., 2024) demonstrated that habenula (Hb) volume is associated with psychological resilience, a key protective factor against depression. However, the biological mechanisms underpinning this relationship remain unclear.

View Article and Find Full Text PDF

The 12-lead electrocardiogram (ECG) is inexpensive and widely available. Whether conditions across the human disease landscape can be detected using the ECG is unclear. We developed a deep learning denoising autoencoder and systematically evaluated associations between ECG encodings and ~1,600 Phecode-based diseases in three datasets separate from model development, and meta-analyzed the results.

View Article and Find Full Text PDF

Establishing In-vivo brain microdialysis for comparing concentrations of a variety of cortical neurotransmitters in the awake rhesus macaque between different cognitive states.

J Neurosci Methods

January 2025

Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Goettingen, Germany; Faculty of Biology and Psychology, University of Goettingen, 37077 Goettingen, Germany.

Background: Neuronal activity is modulated by behavior and cognitive processes. The combination of several neurotransmitter systems, acting directly or indirectly on specific populations of neurons, underlie such modulations. Most studies with non-human primates (NHPs) fail to capture this complexity, partly due to the lack of adequate methods for reliably and simultaneously measuring a broad spectrum of neurotransmitters while the animal engages in behavioral tasks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!