Cross sections for the threshold collision-induced dissociation of Cu(2+)(H(2)O)(n), where n = 8 - 10, are measured using a guided ion beam tandem mass spectrometer. The primary dissociation pathway is found to be loss of a single water molecule followed by the sequential loss of additional water molecules until n = 8, at which point charge separation to form CuOH(+)(H(2)O)(4) (+) H(+)(H(2)O)(3) is observed to occur at a slightly lower energy than loss of a water molecule. Competition from charge separation prohibits the formation of appreciable amounts of the n = 7 or smaller complexes as reactants in the source. These findings indicate that Cu(2+) has a critical size of 8. Analysis of the data using statistical modeling techniques that account for energy distributions and lifetime effects yields primary and sequential bond dissociation energies (BDEs) for loss of one and two water molecules from n = 8 - 10 complexes as well as the barrier for charge separation from n = 8. More speculative analysis extends the thermochemistry obtained down to n = 5 and 6. Theoretical BDEs are determined from quantum chemical calculations using structures optimized at the B3LYP/6 311(+)G(d,p) level along with the lowest-energy isomers suggested by single point energies at the MP2(full), M06, B3LYP, and B3P86 levels of theory using a 6- 311(+)G(2d,2p) basis set. BDEs at 0K are converted to 298 K thermodynamic values using a rigid rotor/harmonic oscillator approximation. Experimental and theoretical entropies of activation suggest that a third solvent shell forms at n = 9, in accord with previous findings. The present work represents the first experimentally determined hydration enthalpies for the Cu(2+)(H(2)O)n system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1255/ejms.1334 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Applied Chemistry, Chuo University, Tokyo 112-8551, Japan.
We employed machine learning (ML) techniques combined with potential-dependent photoelectrochemical impedance spectroscopy (pot-PEIS) to gain deeper insights into the charge transport mechanisms of hematite (α-FeO) photoanodes. By the Shapley Additive exPlanations (SHAP) analysis from the ML model constructed from a small data set (dozens of samples) of electrical parameters obtained from pot-PEIS and the PEC performance, we identified the dominant factors influencing the electron transport to the back contact in the bulk and hole transfer to a solution at the hematite/electrolyte interface. The results revealed that shallow defect states significantly enhance electron transport, while deep defect states impede it, and also one of the surface states enhances the hole transfer to the electrolyte solution.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Ritsumeikan University: Ritsumeikan Daigaku, Applied Chemistry, B805 Biolink, 1-1-1 Nojihigashi, 525-8577, Kusatsu, JAPAN.
Inorganic photochromic materials offer several advantages over organic compounds, including relatively inexpensive and higher thermal stability. However, tuning their color with the same component has remained a significant challenge. In this study, we demonstrate that the photochromic color of Cu-doped ZnS nanocrystals (NCs), which is initially pale yellow before light irradiation, can be tuned from gray to brown by adjusting the surface stoichiometry of Zn and S, which is controlled through the use of thiol and non-thiol ligands.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
College of Chemistry, Baicheng Normal University, Baicheng 137018, P. R. China.
Herein, the construction of potential donor-acceptor (D-A) structures was guided using density-functional theory (DFT) calculations. The photocatalytic nitrogen fixation performance of TAPT-CHF was then experimentally determined to be 327.58 μmol g h, which was attributed to its efficient photo-induced charge separation and migration ability.
View Article and Find Full Text PDFRSC Adv
January 2025
Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade Federal Rural do Semi-Árido (UFERSA) CEP 59625-900 Mossoró RN Brazil
Chalcones demonstrate significant absorption in the near ultraviolet-visible spectrum, making them valuable for applications such as solar cells, light-emitting diodes, and nonlinear optics. This study investigates four dibenzalacetone derivatives (DBAd), DBA, DBC, DEP, and DMA, examining the impact of electron-donating and electron-withdrawing groups and conjugation elongation on their electronic structure in solvents of varying polarities. Using the Polarizable Continuum Model (PCM) and time-dependent density functional theory (TD-DFT), we characterized the excited states of these compounds.
View Article and Find Full Text PDFRev Cardiovasc Med
January 2025
Cardiac Surgery, University of Cincinnati Medical Center, Cincinnati, OH 45202, USA.
Background: The fluorescent dye indocyanine green (ICG) has been used to identify anatomical structures intraoperatively in coronary artery bypass grafting (CABG). This study aimed to evaluate the feasibility of using ICG to assess graft patency and territorial distribution of myocardial reperfusion during CABG.
Methods: Porcine arrested hearts (n = 18) were used to evaluate territorial distribution of native coronary arteries and of a coronary bypass constructed with porcine saphenous vein graft (SVG) using ICG.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!