Regulation of mitochondrial morphology and cell cycle by microRNA-214 targeting Mitofusin2.

Biochem Biophys Res Commun

Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF, Bidhan Nagar, Kolkata, 700 064, India; Biomedical Genomics Centre, PG Polyclinic Building (3rd Floor), 5, Suburbun Hospital Road, Kolkata, 700020, India. Electronic address:

Published: October 2015

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by the increase in CAG repeats beyond 36 at the exon1 of the gene Huntingtin (HTT). Among the various dysfunctions of biological processes in HD, transcription deregulation due to abnormalities in actions of transcription factors has been considered to be one of the important pathological conditions. In addition, deregulation of microRNA (miRNA) expression has been described in HD. Earlier, expression of microRNA-214 (miR-214) has been shown to increase in HD cell models and target HTT gene; the expression of the later being inversely correlated to that of miR-214. In the present communication, we observed that the expressions of several HTT co-expressed genes are modulated by exogenous expression of miR-214 or by its mutant. Among several HTT co-expressed genes, MFN2 was shown to be the direct target of miR-214. Exogenous expression of miR-214, repressed the expression of MFN2, increased the distribution of fragmented mitochondria and altered the distribution of cells in different phases of cell cycle. In summary, we have shown that increased expression of miR-214 observed in HD cell model could target MFN2, altered mitochondrial morphology and deregulated cell cycle. Inhibition of miR-214 could be a possible target of intervention in HD pathogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2015.08.090DOI Listing

Publication Analysis

Top Keywords

cell cycle
12
expression mir-214
12
mitochondrial morphology
8
htt co-expressed
8
co-expressed genes
8
exogenous expression
8
expression
7
mir-214
7
cell
5
regulation mitochondrial
4

Similar Publications

Transcriptional coupling of telomeric retrotransposons with the cell cycle.

Sci Adv

January 2025

Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA.

Unlike most species that use telomerase for telomere maintenance, many dipterans, including , rely on three telomere-specific retrotransposons (TRs)-, , and -to form tandem repeats at chromosome ends. Although TR transcription is crucial in their life cycle, its regulation remains poorly understood. This study identifies the Mediator complex, E2F1-Dp, and Scalloped/dTEAD as key regulators of TR transcription.

View Article and Find Full Text PDF

Fluid shear stress (FSS) from blood flow sensed by vascular endothelial cells (ECs) determines vessel behavior, but regulatory mechanisms are only partially understood. We used cell state transition assessment and regulation (cSTAR), a powerful computational method, to elucidate EC transcriptomic states under low shear stress (LSS), physiological shear stress (PSS), high shear stress (HSS), and oscillatory shear stress (OSS) that induce vessel inward remodeling, stabilization, outward remodeling, or disease susceptibility, respectively. Combined with a publicly available database on EC transcriptomic responses to drug treatments, this approach inferred a regulatory network controlling EC states and made several notable predictions.

View Article and Find Full Text PDF

Phthalates are known endocrine disrupting chemicals and ovarian toxicants that are used widely in consumer products. Phthalates have been shown to exert ovarian toxicity on multiple endpoints, altering transcription of genes responsible for normal ovarian function. However, the molecular mechanisms by which phthalates act on the ovary are not well understood.

View Article and Find Full Text PDF

Maternal phthalates exposure promotes neural stem cell differentiation into phagocytic astrocytes and synapse engulfment via IRE1α/XBP1s pathway.

Cell Rep

January 2025

Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China. Electronic address:

Humans are widely exposed to phthalates, a common chemical plasticizer. Previous cohort studies have revealed that maternal exposure to monobutyl phthalate (MBP), a key metabolite of phthalates, is associated with neurodevelopmental defects. However, the molecular mechanism remains unclear.

View Article and Find Full Text PDF

Cigarette smoking is a well-known risk factor inducing the development and progression of various diseases. Nicotine (NIC) is the major constituent of cigarette smoke. However, knowledge of the mechanism underlying the NIC-regulated stem cell functions is limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!