A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

SCR96, a small cysteine-rich secretory protein of Phytophthora cactorum, can trigger cell death in the Solanaceae and is important for pathogenicity and oxidative stress tolerance. | LitMetric

Peptides and small molecules produced by both the plant pathogen Phytophthora and host plants in the apoplastic space mediate the relationship between the interplaying organisms. Various Phytophthora apoplastic effectors, including small cysteine-rich (SCR) secretory proteins, have been identified, but their roles during interaction remain to be determined. Here, we identified an SCR effector encoded by scr96, one of three novel genes encoding SCR proteins in P. cactorum with similarity to the P. cactorum phytotoxic protein PcF. Together with the other two genes, scr96 was transcriptionally induced throughout the developmental and infection stages of the pathogen. These genes triggered plant cell death (PCD) in the Solanaceae, including Nicotiana benthamiana and tomato. The scr96 gene did not show single nucleotide polymorphisms in a collection of P. cactorum isolates from different countries and host plants, suggesting that its role is essential and non-redundant during infection. Homologues of SCR96 were identified only in oomycetes, but not in fungi and other organisms. A stable protoplast transformation protocol was adapted for P. cactorum using green fluorescent protein as a marker. The silencing of scr96 in P. cactorum caused gene-silenced transformants to lose their pathogenicity on host plants and these transformants were significantly more sensitive to oxidative stress. Transient expression of scr96 partially recovered the virulence of gene-silenced transformants on plants. Overall, our results indicate that the P. cactorum scr96 gene encodes an important virulence factor that not only causes PCD in host plants, but is also important for pathogenicity and oxidative stress tolerance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6638419PMC
http://dx.doi.org/10.1111/mpp.12303DOI Listing

Publication Analysis

Top Keywords

host plants
16
oxidative stress
12
scr96
8
small cysteine-rich
8
cell death
8
pathogenicity oxidative
8
stress tolerance
8
scr96 gene
8
gene-silenced transformants
8
p cactorum
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!