Protein domain dynamics and electron transfer chemistry are often associated, but real-time analysis of domain motion in enzyme-catalysed reactions and the elucidation of mechanistic schemes that relate these motions to the reaction chemistry are major challenges for biological catalysis research. Previously we suggested that reduction of human cytochrome P450 reductase with the reducing coenzyme NADPH is accompanied by major structural re-orientation of the FMN- and FAD-binding domains through an inferred dynamic cycle of 'open' and 'closed' conformations of the enzyme (PLoS Biol, 2011, e1001222). However, these studies were restricted to stopped-flow/FRET analysis of the reductive half-reaction, and were compromised by fluorescence quenching of the acceptor by the flavin cofactors. Here we have improved the design of the FRET system, by using dye pairs with near-IR fluorescence, and extended studies on human cytochrome P450 reductase to the oxidative half-reaction using a double-mixing stopped-flow assay, thereby analysing in real-time conformational dynamics throughout the complete catalytic cycle. We correlate redox changes accompanying the reaction chemistry with protein dynamic changes observed by FRET, and show that redox chemistry drives a major re-orientation of the protein domains in both the reductive and oxidative half-reactions. Our studies using the tractable (soluble) surrogate electron acceptor cytochrome c provide a framework for analysing mechanisms of electron transfer in the endoplasmic reticulum between cytochrome P450 reductase and cognate P450 enzymes. More generally, our work emphasizes the importance of protein dynamics in intra- and inter-protein electron transfer, and establishes methodology for real-time analysis of structural changes throughout the catalytic cycle of complex redox proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4973710PMC
http://dx.doi.org/10.1111/febs.13501DOI Listing

Publication Analysis

Top Keywords

electron transfer
16
cytochrome p450
16
p450 reductase
16
real-time analysis
12
human cytochrome
12
reaction chemistry
8
catalytic cycle
8
cytochrome
6
electron
5
p450
5

Similar Publications

Carboxylated cellulose nanocrystals mediated flower-like zinc oxide for antimicrobial without activation of light.

J Colloid Interface Sci

April 2025

State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:

Conventional light-driven antimicrobial strategies of zinc oxide (ZnO) are limited by inadequate illumination in dark environments. In this study, carboxylated cellulose nanocrystals (MCNC) mediated flower-like ZnO (C@Z) with self-promoted reactive oxygen species release under dark is fabricated. The adsorption of Zn ions on MCNC prompts the growth of ZnO along the (002) crystal plane, forming a flower-like hybrid with superior dispersibility and oxygen vacancies compared to MCNC-free ZnO, which exposes the (100) plane.

View Article and Find Full Text PDF

An ultrasensitive ECL immunosensor with a dual signal amplification strategy using AuNPs@GO@SmMoSe and Gd(MoO) for estriol detection.

Anal Chim Acta

February 2025

School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea. Electronic address:

Background: Estriol (E3) is a common estrogen responsible for regulating the female reproductive system, but excessive amount can pose health risks to humans and wild life. Therefore, sensitive and accurate detection of estriol level is crucial. A novel competitive ECL immunosensor based on a dual signal amplification strategy of AuNPs@GO@SmMoSe and Gd(MoO) was fabricated for ultrasensitive detection of estriol.

View Article and Find Full Text PDF

Lattice coherency engineering trigger rapid charge transport at the heterointerface of Te/InO@MXene photocatalysts for boosting photocatalytic hydrogen evolution.

J Colloid Interface Sci

January 2025

College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China; Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar 161006, PR China. Electronic address:

The establishment of heterojunctions has been demonstrated as an effective method to improve the efficiency of photocatalytic hydrogen production. Conventional heterojunctions usually have random orientation relationships, and heterointerfaces can hinder photogenerated carrier transport due to larger lattice mismatches, thus reducing the photoelectric conversion efficiency. In this study, a novel Te/InO@MXene lattice coherency heterojunction was prepared by leveraging the identical lattice spacing of InO (222) and Te (021) crystal face.

View Article and Find Full Text PDF

Two-in-one strategy to enhance the stability of TiCT in transition metal ion solutions.

J Colloid Interface Sci

January 2025

College of Materials Science and Engineering, Hunan University, Changsha 410082 PR China. Electronic address:

Although MXenes have attracted significant attention across diverse fields, they exhibit a pronounced susceptibility to oxidation in aqueous environments, with oxidation significantly accelerated in the presence of transition metal ions (TMI) such as Fe and Cu. This limitation impedes the synthesis of transition metal compounds/MXene-based composites and their potential for functional applications. In this study, we elucidate the mechanism of accelerated oxidation of TiCT is that Fe promotes the electron loss in TiCT, thus leading to an increased production of hydroxyl radicals (OH) to oxidize TiCT.

View Article and Find Full Text PDF

The development of electrode materials for aqueous ammonium-ion supercapacitors (NH-SCs) has garnered significant attention in recent years. Poor intrinsic conductivity, sluggish electron transfer and ion diffusion kinetics, as well as structural degradation of vanadium oxides during the electrochemical process, pose significant challenges for their efficient ammonium-ion storage. In this work, to address the above issues, the core-shell VO·nHO@poly(3,4-ethylenedioxithiophene) composite (denoted as VOH@PEDOT) is designed and prepared by a simple agitation method to boost the ammonium-ion storage of VO·nHO (VOH).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!