The properties and performance of metal/oxide nanocomposites are governed by the structure and chemistry of the metal/oxide interfaces. Here we report an integrated theoretical and experimental study examining the role of interfacial structure, particularly misfit dislocations, on solute segregation at a metal/oxide interface. We find that the local oxygen environment, which varies significantly between the misfit dislocations and the coherent terraces, dictates the segregation tendency of solutes to the interface. Depending on the nature of the solute and local oxygen content, segregation to misfit dislocations can change from attraction to repulsion, revealing the complex interplay between chemistry and structure at metal/oxide interfaces. These findings indicate that the solute chemistry at misfit dislocations is controlled by the dislocation density and oxygen content. Fundamental thermodynamic concepts – the Hume-Rothery rules and the Ellingham diagram – qualitatively predict the segregation behavior of solutes to such interfaces, providing design rules for novel interfacial chemistries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5378897PMC
http://dx.doi.org/10.1038/srep13086DOI Listing

Publication Analysis

Top Keywords

misfit dislocations
16
metal/oxide interfaces
12
solute segregation
8
local oxygen
8
oxygen content
8
segregation
5
metal/oxide
5
non-uniform solute
4
segregation semi-coherent
4
semi-coherent metal/oxide
4

Similar Publications

Precise Synthesis of 4.75 V-Tolerant LiCoO with Homogeneous Delithiation and Reduced Internal Strain.

J Am Chem Soc

January 2025

College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.

The rapid advancements in 3C electronic devices necessitate an increase in the charge cutoff voltage of LiCoO to unlock a higher energy density that surpasses the currently available levels. However, the structural devastation and electrochemical decay of LiCoO are significantly exacerbated, particularly at ≥4.5 V, due to the stress concentration caused by more severe lattice expansion and shrinkage, coupled with heterogeneous Li intercalation/deintercalation reactions.

View Article and Find Full Text PDF

GaAs Solar Cells Grown Directly on V-Groove Si Substrates.

ACS Appl Mater Interfaces

December 2024

National Renewable Energy Laboratory, Golden, Colorado 80401, United States.

The direct epitaxial growth of high-quality III-V semiconductors on Si is a challenging materials science problem with a number of applications in optoelectronic devices, such as solar cells and on-chip lasers. We report the reduction of dislocation density in GaAs solar cells grown directly on nanopatterned V-groove Si substrates by metal-organic vapor-phase epitaxy. Starting from a template of GaP on V-groove Si, we achieved a low threading dislocation density (TDD) of 3 × 10 cm in the GaAs by performing thermal cycle annealing of the GaAs followed by growth of InGaAs dislocation filter layers.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers mapped the three-dimensional strain field and identified how indium content in the shell impacts the strain distribution and plastic relaxation processes.
  • * The study found that although axial strains are uniform, radial and tangential strain gradients occur due to strain concentration at interfaces, affecting the growth strategies for these nanowires.
View Article and Find Full Text PDF

A one-step fabrication of soft-magnetic high entropy alloy fiber with excellent strength and flexibility.

Nat Commun

December 2024

CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China.

Soft-magnetic fibers (SMFs) play a crucial role in energy conversion, transmission, and storage within electronic devices. However, conventional SMFs have poor plasticity and are therefore difficult to withstand long-term tensile, torsional, and shear deformation. A high fraction of grain boundaries could improve plastic deformability of conventional SMFs, but deteriorates the coercivity.

View Article and Find Full Text PDF

Van der Waals heteroepitaxy refers to the growth of strain- and misfit-dislocation-free epitaxial films on layered substrates or vice versa. Such heteroepitaxial technique can be utilized in developing flexible near-infrared transition metal nitride plasmonic materials to broaden their photonic and bioplasmonic applications, such as antifogging, smart windows, and bioimaging. Here, we show the first conclusive experimental demonstration of the van der Waals heteroepitaxy-enabled flexible semiconducting scandium nitride (ScN) thin films exhibiting near-infrared, low-loss epsilon-near-zero, and surface plasmon-polariton resonances.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!