Phenotypic plasticity and phenotypic stability are major components of the adaptive evolution of organisms to environmental variation. The invariant two-egg clutch size of Eudyptes penguins has recently been proposed to be a unique example of a maladaptive phenotypic stability, while their egg mass is a plastic trait. We tested whether this phenotypic plasticity during reproduction might result from constraints imposed by migration (migratory carry-over effect) and breeding (due to the depletion of female body reserves). For the first time, we examined whether these constraints differ between eggs within clutches and between egg components (yolk and albumen). The interval between colony return and clutch initiation positively influenced the yolk mass, the albumen mass, and the subsequent total egg mass of first-laid eggs. This time interval had only a slight negative influence on the yolk mass of second-laid eggs and no influence on their albumen and subsequent total masses. For both eggs, female body mass at laying positively influenced albumen and total egg masses. Female investment into the entire clutch was not related to the time in the colony before laying but increased with female body mass. These novel results suggest that the unique intraclutch egg size dimorphism exhibited in Eudyptes penguins, with first-laid eggs being consistently smaller than second-laid eggs, might be due to a combination of constraints: a migratory carry-over effect on the first-laid egg and a body reserve depletion effect on the second-laid egg. Both these constraints might explain why the timing of reproduction, especially egg formation, is narrow in migratory capital breeders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4541988 | PMC |
http://dx.doi.org/10.1002/ece3.1543 | DOI Listing |
Glob Chang Biol
August 2024
Institute for Marine and Antarctic Studies, Australian Centre for Excellence in Antarctic Science, Centre for Marine Socioecology, University of Tasmania, Hobart, Australia.
Terrestrially breeding marine predators have experienced shifts in species distribution, prey availability, breeding phenology, and population dynamics due to climate change worldwide. These central-place foragers are restricted within proximity of their breeding colonies during the breeding season, making them highly susceptible to any changes in both marine and terrestrial environments. While ecologists have developed risk assessments to evaluate climate risk in various contexts, these often overlook critical breeding biology data.
View Article and Find Full Text PDFSci Total Environ
November 2024
Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA.
Horm Behav
August 2024
Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Savoyenstraße 1A, 1160 Vienna, Austria; Department of Behavioral and Cognitive Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria. Electronic address:
A multitude of animal species undergo prolonged fasting events at regularly occurring life history stages. During such periods of food deprivation, individuals need to suppress their appetite. The satiety signalling gut hormone ghrelin has received much attention in this context in studies looking at mammalian systems.
View Article and Find Full Text PDFGlob Chang Biol
January 2024
Institut de Ciencies del Mar, Recursos Marins Renovables, Barcelona, Spain.
As charismatic and iconic species, penguins can act as "ambassadors" or flagship species to promote the conservation of marine habitats in the Southern Hemisphere. Unfortunately, there is a lack of reliable, comprehensive, and systematic analysis aimed at compiling spatially explicit assessments of the multiple impacts that the world's 18 species of penguin are facing. We provide such an assessment by combining the available penguin occurrence information from Global Biodiversity Information Facility (>800,000 occurrences) with three main stressors: climate-driven environmental changes at sea, industrial fisheries, and human disturbances on land.
View Article and Find Full Text PDFEnviron Pollut
February 2024
Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain.
Mercury (Hg) is a global pollutant known for its significant bioaccumulation and biomagnification capabilities, posing a particular threat to marine environments. Seabirds have been recognized as effective bioindicators of marine pollution, and, among them, penguins present a unique opportunity to serve as a single taxonomic group (Sphenisciformes) for monitoring Hg across distinct marine ecosystems in the Southern Hemisphere. In this study, we conducted a comprehensive systematic review of Hg concentrations, and performed a meta-analysis that took into account the various sources of uncertainty associated with Hg contamination in penguins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!