A key property of herpes simplex viruses (HSVs) is their ability to establish latent infection in sensory or autonomic ganglia and to reactivate on physical, hormonal, or emotional stress. In latently infected ganglia, HSVs express a long noncoding RNA, a latency-associated transcript (LAT), which plays a key role in maintaining latently infected neurons, but not viral proteins. To investigate the events leading to reactivation, we examined the use of ganglionic organ cultures that enable rapid reactivation in medium containing antibody to nerve growth factor (NGF) or delayed reactivation in medium containing NGF and epidermal growth factor (EGF). Here we report the discovery that activating transcription factor 3 (ATF3), a stress response protein, profoundly affects the interaction of HSV with its host. Specifically, (i) ATF3 is induced by stress, such as inhibition of protein synthesis or infection; (ii) in infected cells, ATF3 enhances the accumulation of LAT by acting on the response elements in the promoter of the LAT precursor RNA; (iii) ATF3 is induced nearly 100-fold in ganglionic organ cultures; and (iv) ATF3 plays a key role in the maintenance of the latent state, inasmuch as expression of ATF3 bereft of the C-terminal activation domain acts as a dominant negative factor, inducing HSV gene expression in ganglionic organ cultures harboring latent virus and incubated in medium containing NGF and EGF. Thus, ATF3 is a component of a cluster of cellular proteins that together with LAT maintain the integrity of the neurons harboring latent virus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4593112PMC
http://dx.doi.org/10.1073/pnas.1515369112DOI Listing

Publication Analysis

Top Keywords

ganglionic organ
12
organ cultures
12
activating transcription
8
transcription factor
8
latency-associated transcript
8
herpes simplex
8
latent state
8
latently infected
8
plays key
8
key role
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!