Data on the past intensity of Earth's magnetic field (paleointensity) are essential for understanding Earth's deep interior, climatic modeling, and geochronology applications, among other items. Here we demonstrate the possibility that much of available paleointensity data could be biased by instability of thermoremanent magnetization (TRM) associated with non-single-domain (SD) particles. Paleointensity data are derived from experiments in which an ancient TRM, acquired in an unknown field, is replaced by a laboratory-controlled TRM. This procedure is built on the assumption that the process of ancient TRM acquisition is entirely reproducible in the laboratory. Here we show experimental results violating this assumption in a manner not expected from standard theory. We show that the demagnetization-remagnetization relationship of non-SD specimens that were kept in a controlled field for only 2 y show a small but systematic bias relative to sister specimens that were given a fresh TRM. This effect, likely caused by irreversible changes in micromagnetic structures, leads to a bias in paleointensity estimates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568663 | PMC |
http://dx.doi.org/10.1073/pnas.1507986112 | DOI Listing |
Sci Data
July 2024
Department of Earth and Environmental Sciences, University of Rochester, Rochester, N.Y. 14627, USA.
The absence or presence of a lunar paleomagnetosphere is important because it bears directly on the volatile content of the regolith and exploration targets for Artemis and other missions to the Moon. Recent paleointensity study of samples from the Apollo missions has readdressed this question. Multiple specimens from a young 2-million-year-old glass shows a strong magnetization compatible with that induced by charge-separation in an impact plasma, whereas paleointensities of single crystals yield evidence for null magnetizations spanning 3.
View Article and Find Full Text PDFPLoS One
January 2024
Scripps Institution of Oceanography, La Jolla, CA, United States of America.
Data from the marriage of paleomagnetism and archaeology (archaeomagnetism) are the backbone of attempts to create geomagnetic field models for ancient times. Paleointensity experimental design has been the focus of intensive efforts and the requirements and shortcomings are increasingly well understood. Some archaeological materials have excellent age control from inscriptions, which can be tied to a given decade or even a specific year in some cases.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2023
Geophysical Observatory Borok, Institute of Physics of the Earth, Russian Academy of Sciences, Yaroslavl Oblast, 151742 Borok, Russia.
Recovering the geomagnetic field strength in the past is key to understanding deep Earth dynamics and detecting potential geodynamo regimes throughout the history of Earth. To better constrain the predictive power of the paleomagnetic record, we propose an approach based on the analysis of the dependency between geomagnetic field strength and inclination (angle made by the horizontal with the field lines). Based on the outcomes of statistical field models, we show that these two quantities should correlate for a wide range of Earth-like magnetic fields, even with enhanced secular variation, persistent nonzonal components, and severe noise contamination.
View Article and Find Full Text PDFOur understanding of geomagnetic field intensity prior to the era of direct instrumental measurements relies on paleointensity analysis of rocks and archaeological materials that serve as magnetic recorders. Only in rare cases are absolute paleointensity data sets continuous over millennial timescales, in sub-centennial resolution, and directly dated using radiocarbon. As a result, fundamental properties of the geomagnetic field, such as its maximum intensity and rate of change have remained a subject of lively discussion.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2022
Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138.
Obtaining estimates of Earth's magnetic field strength in deep time is complicated by nonideal rock magnetic behavior in many igneous rocks. In this study, we target anorthosite xenoliths that cooled and acquired their magnetization within ca. 1,092 Ma shallowly emplaced diabase intrusions of the North American Midcontinent Rift.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!