This study explored how periodic cathodic polarization of commercially pure titanium (cpTi) alters its electrochemical properties and biocompatibility. MC3T3-E1 preosteoblast cells were cultured directly on cpTi samples and maintained at open circuit potential (OCP) for 24 h followed by an additional 24-h sequence of periodic cathodic polarization to -1000 or -750 mV (vs. Ag/AgCl) for 1 s followed by a 5-s recovery at OCP. Control experiments were performed where the samples were maintained at OCP throughout the entire test. Subsequent electrochemical impedance spectroscopy revealed both of the periodic cathodic polarization conditions significantly reduced the polarization resistance (R ), while only the -1000 mV condition significantly increased the capacitance (C) as compared to the controls. Scanning electron micrographs showed that the cells were fragmented and balled up on the samples periodically shifted to -1000 mV as compared to the cells that were well spread on the controls and samples periodically shifted to -750 mV. Additionally, live/dead fluorescence microscopy revealed that periodic polarizations to -1000 mV reduced cell viability to around 12% as compared to the greater than 95% cell viability observed on the controls and samples periodically polarized to -750 mV. This work showed that periodic cathodic potential shifts can notably alter the electrochemical behavior of cpTi and the viability and morphology of cells seeded directly onto its surface. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1591-1601, 2016.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.b.33499 | DOI Listing |
Microsyst Nanoeng
January 2025
Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, 030051, Taiyuan, China.
The alarming prevalence and mortality rates associated with cardiovascular diseases have emphasized the urgency for innovative detection solutions. Traditional methods, often costly, bulky, and prone to subjectivity, fall short of meeting the need for daily monitoring. Digital and portable wearable monitoring devices have emerged as a promising research frontier.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Waste Science and Technology, Luleå University of Technology, Luleå, Sweden.
Improper management of wood impregnation chemicals and treated wood has led to soil contamination at many wood treatment sites, particularly with toxic substances like creosote oil and chromated copper arsenate (CCA). The simultaneous presence of these pollutants complicates the choice of soil remediation technologies, especially if they are to be applied in situ. In this laboratory study, we attempted to immobilise arsenic (As) and simultaneously degrade polycyclic aromatic hydrocarbons (PAHs) (constituents of creosote oil) by applying a modified electrochemical oxidation method.
View Article and Find Full Text PDFNeurourol Urodyn
January 2025
Department of Surgery, Division of Urology, Virginia Commonwealth University Health System, Richmond, Virginia, USA.
Introduction And Objective: Observable autonomous rhythmic changes in intravesical pressure, termed bladder wall micromotion, is a phenomenon that has been linked to urinary urgency, the key symptom in overactive bladder (OAB). However, the mechanism through which micromotion drives urinary urgency is poorly understood. In addition, micromotion is inherently difficult to study in human urodynamics due to challenges distinguishing it from normal cyclic physiologic processes such as pulse rate, breathing, rectal contractions, and ureteral jetting.
View Article and Find Full Text PDFLangmuir
January 2025
Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India.
Electrochemical CO reduction is crucial in combatting climate change and advancing sustainable energy practices by converting CO into valuable chemicals and fuels, thereby reducing atmospheric CO levels and enabling the storage and utilization of renewable energy from intermittent sources like solar and wind. The selection of electrode materials and platform design plays a critical role in enhancing reaction efficiency and product selectivity during CO reduction. Various metals, both in their solid forms and coated over substrates, have been used in electrochemical CORR.
View Article and Find Full Text PDFOtol Neurotol
February 2025
Department of ORL-Head & Neck Surgery and Audiology, Odense University Hospital, Odense C, Denmark.
Objective: To investigate the association between postoperative antibiotic prophylaxis and the risk of infections leading to implant explantation or hospitalization, with a follow-up of up to 12 years.
Study Design: Retrospective cohort study.
Setting: Tertiary medical institution.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!