In equids, susceptibility to disease caused by Rhodococcus equi occurs almost exclusively in foals. This distribution might be attributable to the age-dependent maturation of immunity following birth undergone by mammalian neonates that renders them especially susceptible to infectious diseases. Expansion and diversification of the neonatal microbiome contribute to development of immunity in the gut. Moreover, diminished diversity of the gastrointestinal microbiome has been associated with risk of infections and immune dysregulation. We thus hypothesized that varying composition or reduced diversity of the intestinal microbiome of neonatal foals would contribute to increased susceptibility of their developing R. equi pneumonia. The composition and diversity indices of the fecal microbiota at 3 and 5 weeks of age were compared among 3 groups of foals: 1) foals that subsequently developed R. equi pneumonia after sampling; 2) foals that subsequently developed ultrasonographic evidence of pulmonary abscess formation or consolidation but not clinical signs (subclinical group); and, 3) foals that developed neither clinical signs nor ultrasonographic evidence of pulmonary abscess formation or consolidation. No significant differences were found among groups at either sampling time, indicating absence of evidence of an influence of composition or diversity of the fecal microbiome, or predicted fecal metagenome, on susceptibility to subsequent R. equi pneumonia. A marked and significant difference identified between a relatively short interval of time appeared to reflect ongoing adaptation to transition from a milk diet to a diet including available forage (including hay) and access to concentrate fed to the mare.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4549325PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0136586PLOS

Publication Analysis

Top Keywords

composition diversity
12
equi pneumonia
12
diversity fecal
8
fecal microbiome
8
fecal metagenome
8
caused rhodococcus
8
rhodococcus equi
8
foals subsequently
8
subsequently developed
8
ultrasonographic evidence
8

Similar Publications

Agricultural subsoil microbiomes and functions exhibit lower resistance to global change than topsoils in Chinese agroecosystems.

Nat Food

January 2025

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, People's Republic of China.

Soils play a critical role in supporting agricultural production. Subsoils, below 20 cm, underpin fundamental agroecosystem sustainability traits including soil carbon storage, climate regulation and water provision. However, little is known about the ecological stability of subsoils in response to global change.

View Article and Find Full Text PDF

The electrochemical biosensor has brought a paradigm shift in the field of sensing due to its fast response and easy operability. The performance of electrochemical sensors can be modified by coupling them with various metal oxides, nanomaterials, and nanocomposites. Hydrogen peroxide is a short-lived reactive oxygen species that plays a crucial role in various physiological and biological processes.

View Article and Find Full Text PDF

Accelerated stochastic processes of plankton community assembly due to tidal restriction by seawall construction in the Yangtze River Estuary.

Mar Environ Res

December 2024

School of Life Sciences, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education and Shanghai Science and Technology Committee, Shanghai, China. Electronic address:

Seawall construction has complex ecological impacts. However, the ecological mechanisms within plankton communities under tidal restriction resulting from seawall construction remain unexplored. Using environmental DNA (eDNA) metabarcoding, this study examined the impact of seawall construction on the assembly process of planktonic eukaryote and bacteria communities from the unrestricted area and the tide-restricted area in the Chongming Dongtan Nature Reserve of Yangtze River Estuary.

View Article and Find Full Text PDF

Uncovering the multi-fencing effects: Changes in plant diversity across dimensions and spatio, and the relationship between diversity and stability.

J Environ Manage

January 2025

Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China. Electronic address:

Plant diversity is fundamental to maintaining grassland ecosystem function. Rangeland managers use fencing as a strategy to enhance plant diversity in degraded grasslands. However, the effects of this natural management approach on grasslands across a wide range of environmental gradients and its spatial pattern remain unclear.

View Article and Find Full Text PDF

Rotational grazing (RG) could be a valid alternative to continuous grazing (CG) in Mediterranean extensive pastures to fight land degradation. This study aimed to compare soil quality under RG and CG management, in paired RG-CG Portuguese pasture areas under strong aridity stress, with RG sites converted from CG management in 2018. Soils were sampled in 2022, at 10 cm depth, over 71 ha of RG and 37 ha of CG pastures, subdivided in 16 and 10 sampling plots, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!