Human monocytes were purified from peripheral blood and cultured in vitro on hydrophobic membranes. Such cells developed into mature tissue-type macrophages after approximately 1 week in culture. During this maturation period the macrophages developed a potent cytotoxic mechanism whereby they could kill the schistosomula of Schistosoma mansoni in standard in vitro cytotoxicity assays. Cytological and ultrastructural studies of the cells grown in vitro indicated that macrophages developed many of the classical histological and ultrastructural features of 'activated' cells with ruffled plasma membranes and significant increases in rough endoplasmic reticulum and Golgi vesicles. Effective cytotoxicity depended upon contact of the effector cells and their parasite target. Further, experiments using metabolic inhibitors indicated that cytotoxicity was dependent upon protein synthesis. Initial results point to the macrophage factor being distinct from some of the better-characterised macrophage secretory products such as tumour necrosis factor, proteases and products of oxygen metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jcs.94.4.733 | DOI Listing |
Recent Pat Biotechnol
January 2025
Center of Excellence in Recombinant Biopharmaceutical Proteins, Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute, Giza, Egypt.
Background: poses a considerable global public health challenge. In Egypt, approximately 60% of the inhabitants in the Northern and Eastern areas of the Nile Delta are affected by this parasite, whereas the Southern region experiences a significantly lower infection rate of 6%.
Aim: Construction of an immune phage display Nbs library based on the VHH framework for selecting -specific Nbs for seeking cost-effective, sensitive, and specific diagnostic tools for rapidly detecting mansoni.
J Comp Neurol
January 2025
Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico.
Snails belonging to the genus Biomphalaria serve as obligatory intermediate hosts for the trematode Schistosoma mansoni, the causative agent for the most widespread form of schistosomiasis. The simpler nervous systems of gastropod molluscs, such as Biomphalaria, provide advantageous models for investigating neural responses to infection at the cellular and network levels. The present study examined neuropeptides related to cholecystokinin (CCK), a major multifunctional regulator of central nervous system (CNS) function in mammals.
View Article and Find Full Text PDFFront Parasitol
May 2024
Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands.
Detection of spp. DNA in gynaecological samples by quantitative real-time polymerase chain reaction (qPCR) is considered to be the reference diagnostic test for female genital schistosomiasis (FGS). However, qPCR needs expensive laboratory procedures and highly trained technicians.
View Article and Find Full Text PDFFront Parasitol
March 2024
Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
Flatworms depend on stem cells for continued tissue growth and renewal during their life cycles, making these cells valuable drug targets. While neoblasts are extensively characterized in the free-living planarian , and similar stem cells have been characterized in the trematode , their identification and characterization in cestodes is just emerging. Since stem cells are generally affected by irradiation, in this work we used this experimental approach to study the stem cells of the model cestode .
View Article and Find Full Text PDFFront Parasitol
April 2024
Institut für Parasitologie, Biomedizinisches Forschungszentrum Seltersberg (BFS), Justus Liebig Universitaet Giessen, Giessen, Germany.
Introduction: Schistosomiasis has for many years relied on a single drug, praziquantel (PZQ) for treatment of the disease. Immense efforts have been invested in the discovery of protein kinase (PK) inhibitors; however, given that the majority of PKs are still not targeted by an inhibitor with a useful level of selectivity, there is a compelling need to expand the chemical space available for synthesizing new, potent, and selective PK inhibitors. Small-molecule inhibitors targeting the ATP pocket of the catalytic domain of PKs have the potential to become drugs devoid of (major) side effects, particularly if they bind selectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!