Complementary LC-MS/MS Proteomic Analysis of Uremic Plasma Proteins.

J Coll Physicians Surg Pak

Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.

Published: August 2015

Objective: To complement an earlier analysis of protein alterations in plasma from uremic versus healthy subjects by addition of further LC-MS/MS analysis to the previously used MALDI-TOF mass analyses.

Methodology: Sequence identifications of tryptic peptides from SDS gel electrophoretic fractions of immunodepleted and HPLC-fractionated plasma was performed from seven chronic kidney disease stage 5 patients (age 55 ± 14 years, glomerular filtration rate 6.9 ±2.9 mL/minute/1.73 m2) and from seven matched controls.

Results: About twice as many proteins were increased in uremic plasma as the previously identified. The identifications included proteins that consistently complement the two identification patterns regarding separate subunits from the same protein complex.

Conclusion: Mass spectrometric analysis is applicable to complex plasma proteomes in clinical settings. The LC-MS/MS technique, based on individual peptide sequence analyses, gives increased identifications and also demonstrates feasibility of this technique in clinical practice.

Download full-text PDF

Source

Publication Analysis

Top Keywords

uremic plasma
8
plasma
5
complementary lc-ms/ms
4
lc-ms/ms proteomic
4
analysis
4
proteomic analysis
4
analysis uremic
4
plasma proteins
4
proteins objective
4
objective complement
4

Similar Publications

Secondary hyperparathyroidism (sHPT) is a significant clinical complication of CKD leading to bone abnormalities and cardiovascular disease. Current treatment based on activating the parathyroid calcium-sensing receptor (CaSR) using calcimimetics such as Cinacalcet, aims to decrease plasma PTH levels and inhibit the progression of parathyroid hyperplasia. In the present study, we found significant diurnal rhythmicity of Casr, encoding the Cinacalcet drug target in hyperplastic parathyroid glands (p = 0.

View Article and Find Full Text PDF

Indoxyl Sulfate and Its Potential Role in Mineralocorticoid Receptor Transactivation in Chronic Kidney Disease.

Cureus

December 2024

Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, Yufu, JPN.

Background: The uremic toxin indoxyl sulfate (IS) is an important factor in chronic kidney disease (CKD) progression. Inhibitors of the renin-angiotensin system and add-on therapy with mineralocorticoid receptor (MR) antagonists can help reduce proteinuria and suppress CKD progression. However, the association between IS and MR activation remains unknown.

View Article and Find Full Text PDF

Liquid chromatography coupled with high resolution mass spectrometry reveals the inhibitory effects of Huangkuisiwu formula on biosynthesis of protein-binding uremic toxins in rats with chronic kidney disease.

J Chromatogr B Analyt Technol Biomed Life Sci

December 2024

Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China. Electronic address:

Chronic kidney disease (CKD) is recognized as a common disorder worldwide. Protein-binding uremic toxins that cannot be efficiently removed by extracorporeal renal replacement therapies, such as indoxyl sulfate (IS) and p-cresyl sulfate (PCS), are associated with high risks of cardiovascular complications and high mortality in CKD population. This study aimed to explore the therapeutical effects of Huangkuisiwu formula (HKSWF) on CKD rats.

View Article and Find Full Text PDF

Objective: To characterize early physiologic stresses imposed by surgery by applying metabolomic analyses to deeply phenotype pre- and postoperative plasma and urine of patients undergoing elective surgical procedures.

Background: Patients experience perioperative stress through depletion of metabolic fuels. Bowel stasis or injury might allow more microbiome-derived uremic toxins to enter the blood, while the liver and kidney are simultaneously clearing analgesic and anesthetic drugs.

View Article and Find Full Text PDF

Case of COVID-19 infection-induced complement-mediated thrombotic microangiopathy.

Med J Armed Forces India

December 2024

Senior Advisor (Medicine) & Nephrologist, Base Hospital Delhi Cantt, New Delhi, India.

The SARS-CoV-2 virus can cause thrombotic microangiopathy (TMA) by alternate pathway activation. We present a case of a young female patient who presented with fever and dialysis-dependent acute kidney injury. On evaluation, she was diagnosed with COVID-19-induced complement-mediated thrombotic microangiopathy (CM-TMA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!