The complete mitochondrial genome of Reticulitermes labralis (Isoptera: Rhinotermitidae) was determined for its nucleotide sequence of 16 113 bp. Its gene content and organization were identical with other Reticulitermes species. The 13 protein-coding genes (PCGs) have typical ATN initiation codon. But, the stop codons were TAA, TAG and an incomplete termination codon (T) abutting an adjacent tRNA gene. Twenty-two tRNA genes, in addition to tRNASer(AGN) replaced lacking of the DHU stem with a simple loop, showed the typical clover-leaf secondary structure. The A + T-rich region was 1311 bp in length with 65.98% A + T content. In addition to the A + T-rich region, non-coding sequences of the mtDNA genome harbored 17 intergenic spacers. There were three complete repeats of repeat A in CR, which were not discovered in other termite species. Phylogenetic tree based on the 11 complete mitochondrial genome sequences of closely related termite species accords well with morphological phylogenetic analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/19401736.2015.1074211 | DOI Listing |
World J Clin Oncol
January 2025
Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China.
Background: Mitochondrial genes are involved in tumor metabolism in ovarian cancer (OC) and affect immune cell infiltration and treatment responses.
Aim: To predict prognosis and immunotherapy response in patients diagnosed with OC using mitochondrial genes and neural networks.
Methods: Prognosis, immunotherapy efficacy, and next-generation sequencing data of patients with OC were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus.
Mitochondrial DNA B Resour
January 2025
Department of Wildlife, Fisheries and Aquaculture, Mississippi State University, Mississippi State, Mississippi, USA.
We present a novel mitogenome assembly of the Redlip Shiner, , and assemblies for the Greenhead Shiner, (Cypriniformes: Leuciscidae). Both are charismatic minnows in the taxonomic group and are endemic to the eastern United States. The genome contains 16,711bp and 16,706bp each comprising a total of 13 protein coding genes, 22 tRNAs, two rRNAs, and a control region.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, Chongqing, China.
Introduction: Mitochondria are essential organelles that provide energy for plants. They are semi-autonomous, maternally inherited, and closely linked to cytoplasmic male sterility (CMS) in plants. , a widely used medicinal plant from the Caprifoliaceae family, is rich in chlorogenic acid (CGA) and its analogues, which are known for their antiviral and anticancer properties.
View Article and Find Full Text PDFSTAR Protoc
January 2025
Department of Neurosurgery, the First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China. Electronic address:
Under pathological conditions, astrocytes can transfer mitochondria to neurons, where they exert neuroprotective effects. In this context, we present a protocol for capturing astrocytic mitochondria in neurons of adult mice using a two-photon microscope. We describe an approach for constructing a mouse model with combined labeling of astrocytic mitochondria and neurons.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
Telomerase, constituted by the dynamic duo of telomerase reverse transcriptase (TERT), the catalytic entity, and an integral RNA component (TERC), is predominantly suppressed in differentiated human cells due to postnatal transcriptional repression of the TERT gene. Dysregulation of telomerase significantly contributes to cancer development via telomere-dependent and independent mechanisms. Telomerase activity is often elevated in advanced cancers, with TERT reactivation and upregulation of TERC observed in early tumorigenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!