Nucleosome Organization in Human Embryonic Stem Cells.

PLoS One

UC Irvine Diabetes Center, University of California Irvine, Irvine, California, United States of America; Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, California, United States of America; Department of Medicine, University of California Irvine, Irvine, California, United States of America; Department of Biological Chemistry, University of California Irvine, Irvine, California, United States of America; Department of Physiology & Biophysics, University of California Irvine, Irvine, California, United States of America.

Published: May 2016

AI Article Synopsis

  • The nucleosome is the basic unit of eukaryotic chromatin, crucial for DNA packaging, transcription regulation, and cellular identity.
  • Recent research utilizing ultra-deep sequencing in human embryonic stem cells indicates that the genome significantly influences nucleosome organization, with inactive regions showing a consistent "ground state" of nucleosome profiles linked to DNA sequences.
  • Factors such as transcriptional activity, histone modifications, and DNA methylation alter this nucleosome arrangement, demonstrated by distinct profiles around actively transcribed exons and variations in occupancy tied to specific epigenetic marks.

Article Abstract

The fundamental repeating unit of eukaryotic chromatin is the nucleosome. Besides being involved in packaging DNA, nucleosome organization plays an important role in transcriptional regulation and cellular identity. Currently, there is much debate about the major determinants of the nucleosome architecture of a genome and its significance with little being known about its role in stem cells. To address these questions, we performed ultra-deep sequencing of nucleosomal DNA in two human embryonic stem cell lines and integrated our data with numerous epigenomic maps. Our analyses have revealed that the genome is a determinant of nucleosome organization with transcriptionally inactive regions characterized by a "ground state" of nucleosome profiles driven by underlying DNA sequences. DNA sequence preferences are associated with heterogeneous chromatin organization around transcription start sites. Transcription, histone modifications, and DNA methylation alter this "ground state" by having distinct effects on both nucleosome positioning and occupancy. As the transcriptional rate increases, nucleosomes become better positioned. Exons transcribed and included in the final spliced mRNA have distinct nucleosome profiles in comparison to exons not included at exon-exon junctions. Genes marked by the active modification H3K4m3 are characterized by lower nucleosome occupancy before the transcription start site compared to genes marked by the inactive modification H3K27m3, while bivalent domains, genes associated with both marks, lie exactly in the middle. Combinatorial patterns of epigenetic marks (chromatin states) are associated with unique nucleosome profiles. Nucleosome organization varies around transcription factor binding in enhancers versus promoters. DNA methylation is associated with increasing nucleosome occupancy and different types of methylations have distinct location preferences within the nucleosome core particle. Finally, computational analysis of nucleosome organization alone is sufficient to elucidate much of the circuitry of pluripotency. Our results, suggest that nucleosome organization is associated with numerous genomic and epigenomic processes and can be used to elucidate cellular identity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4549264PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0136314PLOS

Publication Analysis

Top Keywords

nucleosome organization
24
nucleosome
15
nucleosome profiles
12
human embryonic
8
embryonic stem
8
stem cells
8
cellular identity
8
"ground state"
8
transcription start
8
dna methylation
8

Similar Publications

Eukaryotic DNA is packaged in the cell nucleus into chromatin, composed of arrays of DNA-histone protein octamer complexes, the nucleosomes. Over the past decade, it has become clear that chromatin structure in vivo is not a hierarchy of well-organized folded nucleosome fibers but displays considerable conformational variability and heterogeneity. In vitro and in vivo studies, as well as computational modeling, have revealed that attractive nucleosome-nucleosome interaction with an essential role of nucleosome stacking defines chromatin compaction.

View Article and Find Full Text PDF

Cellular chromatin displays heterogeneous structure and dynamics, properties that control diverse nuclear processes. Models invoke phase separation of conformational ensembles of chromatin fibers as a mechanism regulating chromatin organization . Here we combine biochemistry and molecular dynamics simulations to examine, at single base-pair resolution, how nucleosome spacing controls chromatin phase separation.

View Article and Find Full Text PDF

Cyclobutane pyrimidine dimers (CPDs) are formed in DNA following exposure to ultraviolet (UV) light and are mutagenic unless repaired by nucleotide excision repair (NER). It is known that CPD repair rates vary in different genome regions due to transcription-coupled NER and differences in chromatin accessibility; however, the impact of regional chromatin organization on CPD formation remains unclear. Furthermore, nucleosomes are known to modulate UV damage and repair activity, but how these damage and repair patterns are affected by the overarching chromatin domains in which these nucleosomes are located is not understood.

View Article and Find Full Text PDF

The "Ins and Outs and What-Abouts" of H2A.Z: A Tribute to C. David Allis.

J Biol Chem

January 2025

Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58-62, 35390 Giessen, Germany. Electronic address:

In 2023, the brilliant chromatin biologist C. David Allis passed away leaving a large void in the scientific community and broken hearts in his family and friends. With this review, we want to tribute Dave's enduring inspiration by focusing on the histone variant H2A.

View Article and Find Full Text PDF

Transcription takes place over a significant portion of the human genome. However, only a small portion of the transcriptome, roughly 1.2%, consists of RNAs translated into proteins; the majority of transcripts, on the other hand, comprise a variety of RNA families with varying sizes and functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!