Where's the risk? Landscape epidemiology of gastrointestinal parasitism in Alberta beef cattle.

Parasit Vectors

Department of Geography, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3 M4, Canada.

Published: August 2015

Background: Gastrointenstinal nematodes (GIN) present a serious challenge to the health and productivity of grazing stock around the globe. However, the epidemiology of GIN transmission remains poorly understood in northern climates. Combining use of serological diagnostics, GIS mapping technology, and geospatial statistics, we evaluated ecological covariates of spatial and temporal variability in GIN transmission among bovine calves pastured in Alberta, Canada.

Methods: Sera were collected from 1000 beef calves across Alberta, Canada over three consecutive years (2008-2010) and analyzed for presence of anti-GIN antibodies using the SVANOVIR Ostertagia osteragi-Ab ELISA kit. Using a GIS and Bayesian multivariate spatial statistics, we evaluated the degree to which variation in specific environmental covariates (e.g. moisture, humidity, temperature) was associated with variation in spatial and temporal heterogeneity in exposure to GIN (Nematodirus and other trichostrongyles, primarily Ostertagia and Cooperia).

Results: Variation in growing degree days above a base temperature of 5 °C, humidity, air temperature, and accumulated precipitation were found to be significant predictors of broad-scale spatial and temporal variation in serum antibody concentrations. Risk model projections identified that while transmission in cattle from southeastern and northwestern Alberta was relatively low in all years, rate of GIN transmission was generally higher in the central region of Alberta.

Conclusions: The spatial variability in risk is attributed to higher average humidity, precipitation and moderate temperatures in the central region of Alberta in comparison with the hot, dry southeastern corner of the province and the cool, dry northwestern corner. Although more targeted sampling is needed to improve model accuracy, our projections represent an important step towards tying treatment recommendations to actual risk of infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4548846PMC
http://dx.doi.org/10.1186/s13071-015-1040-xDOI Listing

Publication Analysis

Top Keywords

gin transmission
12
spatial temporal
12
statistics evaluated
8
central region
8
alberta
5
gin
5
spatial
5
where's risk?
4
risk? landscape
4
landscape epidemiology
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!