A Gram-stain-positive, facultatively anaerobic, endospore-forming organism, isolated from the stem of Gossypium hirsutum, was studied to determine its taxonomic position. On the basis of 16S rRNA gene sequence similarity comparisons, strain JM-267T was grouped in the genus Bacillus, related most closely to the type strains of Bacillus simplex and Bacillus huizhouensis (both 97.8%), Bacillus muralis (97.7%), Bacillus butanolivorans and Bacillus psychrosaccharolyticus (both 97.3%). 16S rRNA gene sequence similarity to the sequences of the type strains of other Bacillus species was < 97.0%. The fatty acid profile supported the grouping of the strain to the genus Bacillus. As major fatty acids, anteiso-C15:0, iso-C15:0, iso-C14:0 and iso-C16:0 were detected. The polar lipid profile contained the major components diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The major quinone was menaquinone 7 (MK-7). DNA-DNA hybridizations with B. simplex DSM 1321T, B. huizhouensis GSS03T, B. muralis LMG 20238T, B. butanolivorans LMG 23974T and B. psychrosaccharolyticus DSM 6T resulted in values clearly below 70%. In addition, physiological and biochemical test results allowed the clear phenotypic differentiation of strain JM-267T from the most closely related species. Hence, strain JM-267T is considered to represent a novel species of the genus Bacillus, for which the name Bacillus gossypii sp. nov. is proposed. The type strain is JM-267T ( = DSM 100034T = LMG 28742T).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/ijsem.0.000555 | DOI Listing |
Int J Syst Evol Microbiol
November 2015
Institut für Angewandte Mikrobiologie, Universität Giessen, Giessen, Germany.
A Gram-stain-positive, facultatively anaerobic, endospore-forming organism, isolated from the stem of Gossypium hirsutum, was studied to determine its taxonomic position. On the basis of 16S rRNA gene sequence similarity comparisons, strain JM-267T was grouped in the genus Bacillus, related most closely to the type strains of Bacillus simplex and Bacillus huizhouensis (both 97.8%), Bacillus muralis (97.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!