V(D)J recombination is initiated by the binding of the RAG1 and RAG2 proteins to recombination signal sequences (RSSs) that consist of conserved heptamer and nonamer sequences separated by a spacer of either 12 or 23 bp. Here, we used RAG-inducible pro-B v-Abl cell lines in conjunction with chromatin immunoprecipitation to better understand the protein and RSS requirements for RAG recruitment to chromatin. Using a catalytic mutant form of RAG1 to prevent recombination, we did not observe cooperation between RAG1 and RAG2 in their recruitment to endogenous Jκ gene segments over a 48-h time course. Using retroviral recombination substrates, we found that RAG1 was recruited inefficiently to substrates lacking an RSS or containing a single RSS, better to substrates with two 12-bp RSSs (12RSSs) or two 23-bp RSSs (23RSSs), and more efficiently to a substrate with a 12/23RSS pair. RSS mutagenesis demonstrated a major role for the nonamer element in RAG1 binding, and correspondingly, a cryptic RSS consisting of a repeat of CA dinucleotides, which poorly re-creates the nonamer, was ineffective in recruiting RAG1. Our findings suggest that 12RSS-23RSS cooperation (the "12/23 rule") is important not only for regulating RAG-mediated DNA cleavage but also for the efficiency of RAG recruitment to chromatin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4589606 | PMC |
http://dx.doi.org/10.1128/MCB.00219-15 | DOI Listing |
J Invest Dermatol
December 2024
Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) CONICET, ARGENTINA. Electronic address:
Fungal skin infections significantly contribute to the global human disease burden, yet our understanding of cutaneous immunity against dermatophytes remains limited. Previously, we developed a model of epicutaneous infection with Microsporum canis in C57BL/6 mice, which highlighted the critical role of IL-17RA signaling in anti-dermatophyte defenses. Here, we expanded our investigation to the human pathogen Nannizzia gypsea and demonstrated that skin γδTCRint and CD8/CD4 double-negative βTCR+ T cells are the principal producers of IL-17A during dermatophytosis.
View Article and Find Full Text PDFMicrobiol Spectr
November 2024
Discovery Sciences and Technologies, Gilead Sciences Inc., Foster, California, USA.
J Biol Chem
October 2024
Department of Pathology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands. Electronic address:
During the maturation of pre-B cells, the recombination activating gene 1 and 2 (RAG1/2) endonuclease complex plays a crucial role in coordinating V(D)J recombination by introducing DNA breaks in immunoglobulin (Ig) loci. Dysregulation of RAG1/2 has been linked to the onset of B cell malignancies, yet the mechanisms controlling RAG1/2 in pre-B cells exposed to excessive DNA damage are not fully understood. In this study, we show that DNA damage-induced activation of p53 initiates a negative-feedback loop which rapidly downregulates RAG1 levels.
View Article and Find Full Text PDFImmunology
January 2025
Department of Vascular Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
J Immunol
October 2024
Department of Biochemistry, Indian Institute of Science, Bangalore, India.
The process of Ag receptor diversity is initiated by RAGs consisting of RAG1 and RAG2 in developing lymphocytes. Besides its role as a sequence-specific nuclease during V(D)J recombination, RAGs can also act as a structure-specific nuclease leading to genome instability. Thus, regulation of RAG expression is essential to maintaining genome stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!