Zinc and N-acetylcysteine modify mercury distribution and promote increase in hepatic metallothionein levels.

J Trace Elem Med Biol

Post-Graduate Course in Biological Science - Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil; Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil. Electronic address:

Published: October 2015

This study investigated the ability of zinc (Zn) and N-acetylcysteine (NAC) in preventing the biochemical alterations caused by mercury (Hg) and the retention of this metal in different organs. Adult female rats received ZnCl2 (27mg/kg) and/or NAC (5mg/kg) or saline (0.9%) subcutaneously and after 24h they received HgCl2 (5mg/kg) or saline (0.9%). Twenty-four hours after, they were sacrificed and analyses were performed. Hg inhibited hepatic, renal, and blood δ-aminolevulinic acid dehydratase (δ-ALA-D) activity, decreased renal total thiol levels, as well as increased serum creatinine and urea levels and aspartate aminotransferase activity. HgCl2-exposed groups presented an important retention of Hg in all the tissues analyzed. All pre-treatments demonstrated tendency in preventing hepatic δ-ALA-D inhibition, whereas only ZnCl2 showed this effect on blood enzyme. Moreover, the combination of these compounds completely prevented liver and blood Hg retention. The exposure to Zn and Hg increased hepatic metallothionein levels. These results show that Zn and NAC presented promising effects against the toxicity caused by HgCl2.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtemb.2015.06.006DOI Listing

Publication Analysis

Top Keywords

zinc n-acetylcysteine
8
hepatic metallothionein
8
metallothionein levels
8
5mg/kg saline
8
saline 09%
8
n-acetylcysteine modify
4
modify mercury
4
mercury distribution
4
distribution promote
4
promote increase
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!