Precision medicine allows a dramatic expansion of biological data, while there is still an urgent need to understand and insight the exact meaning of those data to human health and disease. This has led to an increasing wealth of data unanalyzed. The concept of precision medicine is about the customization of healthcare, with decisions and practices tailored to an individual patient based on their intrinsic biology in addition to clinical "signs and symptoms". Construction of a standardized model for the integration of data from various platforms is the central mission of the 'New Disease Management Model'. The model is helpful for the development of new taxonomy of diseases and subtypes, to personalize therapy based on patient genetic profiles. A rapid progression of precision therapy has been made recently. Clinical trials have shown the therapeutic efficacy of discovered and developed therapeutic agents has improved. However, next-generation drugs would be designed for disease subtypes with more specificity, efficacy and lower toxicity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4547974 | PMC |
http://dx.doi.org/10.1186/s40169-015-0069-y | DOI Listing |
J Med Internet Res
January 2025
Department of Physical Medicine and Rehabilitation, Korea University Anam Hospital, Seoul, Republic of Korea.
Background: Rehabilomics, or the integration of rehabilitation with genomics, proteomics, metabolomics, and other "-omics" fields, aims to promote personalized approaches to rehabilitation care. Cloud-based rehabilitation offers streamlined patient data management and sharing and could potentially play a significant role in advancing rehabilomics research. This study explored the current status and potential benefits of implementing rehabilomics strategies through cloud-based rehabilitation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China.
Carrier-free nanomedicines exhibited significant potential in elevating drug efficacy and safety for tumor management, yet their self assembly typically relied on chemical modifications of drugs or the incorporation of surfactants, thereby compromising the drug's inherent pharmacological activity. To address this challenge, we proposed a triethylamine (TEA)-mediated protonation-deprotonation strategy that enabled the adjustable-proportion self assembly of dual drugs without chemical modification, achieving nearly 100% drug loading capacity. Molecular dynamic simulations, supported by experiment evidence, elucidated the underlying self-assembly mechanism.
View Article and Find Full Text PDFAnn Rheum Dis
January 2025
Academic Department of Rheumatology, Kings College London, London, UK. Electronic address:
Multiple clinical trials for rheumatoid arthritis (RA) prevention have been completed. Here, we set out to report on the lessons learnt from these studies. Researchers who conducted RA prevention trials shared the background, rationale, approach and outcomes and evaluated the lessons learnt to inform the next generation of RA prevention trials.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Surgery, Center for Cancer Medicine, the Fourth Affiliated Hospital of School of Medicine, International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
Irreversible electroporation (IRE) is a novel local tumor ablation technique that can potentially stimulate immune responses. However, IRE alone cannot effectively activate the immune system or prevent distant metastases. Therefore, this study utilized the biocompatibility of Chlorella vulgaris (C.
View Article and Find Full Text PDFDisabil Rehabil Assist Technol
January 2025
School of Rehabilitation, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
Background: Advancements in wearable technology have created new opportunities to monitor stroke survivors' behaviors in daily activities. Research insights are needed to guide its adoption in clinical practice, address current gaps, and shape the future of stroke rehabilitation. This project aims to: (1) Understand stroke rehabilitation researchers' perspectives on the opportunities, challenges, and clinical relevance of wearable technology for stroke rehabilitation, and (2) Identify necessary next steps to integrate wearable technology in research and clinical practice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!