A scaler is one of the most important modules in various video applications, such as ultra-high definition TV and scalable video systems. A variety of scaling techniques have been used to increase the video quality when the resolution of the source image has to be up- and down-scaled. Some conventional schemes exploit the property of local block data. Others consider the edge information of the data to be scaled. In this paper, we formulate a scaling problem to minimize the information loss resulting from the resizing process. The loss is considered in both the spatial and the frequency domains, and then it is minimized to optimize the kernel of the scaler. The simulation results show that the proposed algorithm reduces the information loss more than conventional schemes. When compared with the conventional algorithms, the proposed method outperforms those with similar complexity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2015.2468176 | DOI Listing |
Sensors (Basel)
January 2025
State Grid Zaozhuang Power Supply Company, Zaozhuang 277899, China.
Within the framework of 6G networks, the rapid proliferation of Internet of Things (IoT) devices, coupled with their decentralized and heterogeneous characteristics, presents substantial security challenges. Conventional centralized systems face significant challenges in effectively managing the diverse range of IoT devices, and they are inadequate in addressing the requirements for reduced latency and the efficient processing and analysis of large-scale data. To tackle these challenges, this paper introduces a zero-trust access control framework that integrates blockchain technology with inner-product encryption.
View Article and Find Full Text PDFSensors (Basel)
January 2025
National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China.
Agricultural land classification plays a pivotal role in food security and ecological sustainability, yet achieving accurate large-scale mapping remains challenging. This study presents methodological innovations through a multi-level feature enhancement framework that transcends traditional time series analysis. Using Shandong Province, northern China's agricultural heartland, as a case study, we first established a foundation with time series red-edge vegetation indices (REVI) from Sentinel-2 imagery, uniquely combining the normalized difference red edge index (NDRE) and plant senescence reflectance index (PSRI).
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Civil Engineering, Myongji College, Seoul 03656, Republic of Korea.
Conventional approaches for the structural health monitoring of infrastructures often rely on physical sensors or targets attached to structural members, which require considerable preparation, maintenance, and operational effort, including continuous on-site adjustments. This paper presents an image-driven hybrid structural analysis technique that combines digital image processing (DIP) and regression analysis with a continuum point cloud method (CPCM) built on a particle-based strong formulation. Polynomial regressions capture the boundary shape change due to the structural loading and precisely identify the edge and corner coordinates of the deformed structure.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
School of Microelectronics, Northwestern Polytechnical University, No. 1 Dongxiang Road, Chang'an District, Xi'an 710129, China.
In low intermediate frequency (low-IF) receivers, image interference rejection is one of the core tasks to be accomplished. Conventional active polyphase filters (APPFs) are unable to have a sufficient image rejection ratio (IRR) at high operating frequencies due to the degradation of the IRR by the amplitude and phase imbalances produced by the secondary pole. The proposed solution to the above problem is a frequency-dependent image rejection enhancement technique based on secondary pole compensation.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Research Laboratory "Sensor Systems Based on Integrated Photonics Devices", Ufa University of Science and Technology, 32, Z. Validi St., Ufa 450076, Russia.
Radio photonic technologies have emerged as a promising solution for addressing microwave frequency synthesis challenges in current and future communication and sensing systems. One particularly effective approach is the optoelectronic oscillator (OEO), a simple and cost-effective electro-optical system. The OEO can generate microwave signals with low phase noise and high oscillation frequencies, often outperforming traditional electrical methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!