Arthrobotrys conoides is a nematode-trapping fungus belonging to Orbiliales, Ascomycota group, and traps prey nematodes by means of adhesive network. Fungus has a potential to be used as a biocontrol agent against plant parasitic nematodes. In the present study, we characterized the transcriptome of A. conoides using high-throughput sequencing technology and characterized its virulence unigenes. Total 7,255 cDNA contigs with an average length of 425 bp were generated and 6184 (61.81%) transcripts were functionally annotated and characterized. Majority of unigenes were found analogous to the genes of plant pathogenic fungi. A total of 1749 transcripts were found to be orthologous with eukaryotic proteins of KOG database. Several carbohydrate active enzymes and peptidases were identified. We also analyzed classically and nonclassically secreted proteins and confirmed by BLASTP against fungal secretome database. A total of 916 contigs were analogous to 556 unique proteins of Pathogen Host Interaction (PHI) database. Further, we identified 91 unigenes homologous to the database of fungal virulence factor (DFVF). A total of 104 putative protein kinases coding transcripts were identified by BLASTP against KinBase database, which are major players in signaling pathways. This study provides a comprehensive look at the transcriptome of A. conoides and the identified unigenes might have a role in catching and killing prey nematodes by A. conoides.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jobm.201500237DOI Listing

Publication Analysis

Top Keywords

arthrobotrys conoides
8
prey nematodes
8
transcriptome conoides
8
identified unigenes
8
conoides
5
database
5
insight transcriptome
4
transcriptome arthrobotrys
4
conoides high
4
high throughput
4

Similar Publications

The primary aim of this research was to study the effectiveness of various strains of antagonist microorganisms and biological preparations against , in addition to their impact on the quality of tomato fruits and crop structure. Four microorganism strains and three registered environmentally safe nematicides were used in the experiment presented herein. The results showed that the strains F-22BK/6 and F-22BK/4 had the greatest biological efficacy, reducing the number of galls on tomato plants by 91.

View Article and Find Full Text PDF

Highly adapted obligate endoparasites of the root system, root-knot nematodes ( spp.), cause great damage to agricultural crops. Our research is aimed at the assessment of nematicidal activity and effectiveness of antagonist fungal and bacterial strains against the most common type of root-knot nematode in the south of Russia.

View Article and Find Full Text PDF

Plant growth-promoting bacteria are one of the most interesting methods of controlling fungal phytopathogens. These bacteria can participate in biocontrol via a variety of mechanisms including lipopeptide production, hydrolytic enzymes (e.g.

View Article and Find Full Text PDF

Plant-parasitic nematodes cause devastating agricultural damage worldwide. Only a few synthetic nematicides can be used and their application is limited in fields. Therefore, there is a need for sustainable and environment-friendly alternatives.

View Article and Find Full Text PDF

Halophytic plants growing in harsh desert environments are rich reservoirs of unique endophytic microorganisms. Here, healthy fresh plants of the families Tamaricaceae and Amarantaceae at three saline locations in Iran were investigated for their bioactive endophytic fungi. Among a vast number of isolates, eight isolates were identified as Humicola fuscoatra (Sordariomycetes, Pezizomycotina, Ascomycota) by microscopy and representative DNA sequences of the 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!