This communication outlines the advances made in the development of thermoresponsive substrates for human mesenchymal stem cell (hMSC) expansion and subsequent controlled specific and multilineage differentiation from a previous study performed by this group. Previously, the development of an inexpensive and technically accessible method for hMSC expansion and harvesting was reported, using the solvent casting deposition method and thermoresponsive poly(N-isopropylacrylamide). Here, the logical continuation of this work is reported with the multipassage expansion of hMSCs with phenotypic maintenance followed by induced adipogenic, osteogenic, and chondrogenic differentiation. Interestingly, 1 μm thick solvent cast films are not only capable of hosting an expanding population of phenotypically preserved hMSCs similar to tissue culture plastic controls, but also the cells detached via temperature control better maintain their ability to differentiate compared to conventionally trypsinized cells. This approach to hMSC expansion and differentiation can be highly attractive to stem cell researchers where clinical therapies have seen a collective deviation away from the employment of animal derived products such as proteolytic trypsin.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.201500234DOI Listing

Publication Analysis

Top Keywords

hmsc expansion
12
thermoresponsive substrates
8
human mesenchymal
8
mesenchymal stem
8
stem cell
8
substrates growth
4
growth controlled
4
differentiation
4
controlled differentiation
4
differentiation human
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!