Various surface modifications have been applied to improve the adhesion properties of aluminum for the cap plate and sealing quality of electrolyte on Li ion batteries. In this study, we have tried to find the effective condition for the polymerization of triazine thiols (TT) on modified aluminum surfaces by anodic aluminum oxide. Characterization of polymerized films on aluminum was explored by scanning electron microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectroscopy analysis. Scanning electron microscopy results reveal that meaningful roughness was formed on aluminum surfaces by anodic oxidation. Secondary ion mass spectroscopy analysis results represent that the peel strength was found to depend on film thickness and the composition of the adhesion layer. As a result, Al/PPS (polyphenylene sulfide) resin assemblies developed in this study have superior adhesive property. Therefore, these assemblies might be a viable candidate for a sealing technique for Li ion batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jbn.2015.2027 | DOI Listing |
Polymers (Basel)
December 2024
Department of Chemical Engineering, Yildiz Technical University, Davutpasa Campus, Esenler 34220, Türkiye.
Filament winding is a widely used out-of-autoclave manufacturing technique for producing continuous fiber-reinforced thermoplastic composites. This study focuses on optimizing key filament winding process parameters, including heater temperature, roller pressure, and winding speed, to produce thermoplastic composites. Using Box-Behnken response surface methodology (RSM), the study investigates the effects of these parameters on the compressive load of glass fiber-reinforced polypropylene (GF/PP) and polyphenylene sulfide (GF/PPS) composite cylinders.
View Article and Find Full Text PDFChemistry
January 2025
Osaka University, Institute for Open and Transdisciplinary Research Initiatives (OTRI), 1-6 Yamada-oka, 565-0871, Suita, JAPAN.
Considering the demand for organosulfur materials and the challenges associated with currently used oxidation processes, in this study, we evaluated the counter-cation of sodium chlorite (Na+ClO2-) with tetrabutylammonium chloride (Bu4N+Cl-) to synthesise tetrabutylammonium chlorite (Bu4N+ClO2-). Bu4N+ClO2- exhibited good solubility in organic solvents like chloroform (1.6 g mL-1) and ethyl acetate (0.
View Article and Find Full Text PDFJ Environ Manage
December 2024
State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, PR China; School of Material Science and Engineering, Tiangong University, Tianjin, 300387, PR China. Electronic address:
The heat and corrosion resistance of traditional membranes is inadequate, thus making them inadequate for the separation/filtration needs of harsh environments. Polyphenylene sulfide(PPS) can be used to develop new-generation membrane materials, but PPS has problems such as hydrophobicity and UV resistance. This article proposes a PPS membrane for efficient separation/filtration under extreme conditions, which uses melt-blown PPS non-woven fabric and undergoes oxidation and nitrification modification.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Advanced Composites Research Lab, Faculty of Science, Galala University, Galala City 43511, Egypt.
Nat Commun
November 2024
Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, P. R. China.
Aryl thiols have proven to be a useful class of electron donors and hydrogen atom sources in photochemical processes. However, the direct activation and functionalization of C(sp)-S bonds in aryl thiols remains elusive in the field of photochemistry. Herein, a photochemical carboxylation of C(sp)-S bonds in aryl thiols with CO is reported, providing a synthetic route to important aryl carboxylic acids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!