Second line systemic therapies for hepatocellular carcinoma: Reasons for the failure.

World J Hepatol

Marcello Maida, Calogero Cammà, Giuseppe Cabibbo, Section of Gastroenterology, DIBIMIS, University of Palermo, 90127 Palermo, Italy.

Published: August 2015

Hepatocellular carcinoma (HCC) is the main cause of death in patients with cirrhosis, with an increasing incidence worldwide. Sorafenib is the choice therapy for advanced HCC. Over time several randomized phase III trials have been performed testing sunitinib, brivanib, linifanib and other molecules in head-to-head comparison with Sorafenib as first-line treatment for advanced-stage HCC, but none of these has so far been registered in this setting. Moreover, another feared vacuum arises from the absence of molecules registered as second-line therapy for patients who have failed Sorafenib, representing an urgent unmet medical need. To date all molecules tested as second-line therapies for advanced hepatocellular carcinoma, failed to demonstrate an increased survival compared to placebo. What are the possible reasons for the failure? What we should expect in the near future?

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4539398PMC
http://dx.doi.org/10.4254/wjh.v7.i17.2053DOI Listing

Publication Analysis

Top Keywords

hepatocellular carcinoma
12
second systemic
4
systemic therapies
4
therapies hepatocellular
4
carcinoma reasons
4
reasons failure
4
failure hepatocellular
4
carcinoma hcc
4
hcc main
4
main death
4

Similar Publications

Hepatitis C virus (HCV) infection is a significant risk factor for liver cirrhosis and hepatocellular carcinoma (HCC). Traditionally, the primary prevention strategy for HCV-associated HCC has focused on removing infection through antiviral regimes. Currently, highly effective direct-acting antivirals (DAAs) offer extraordinary success across all patient categories, including cirrhotics.

View Article and Find Full Text PDF

Chronic Hepatitis B Genotype C Mouse Model with Persistent Covalently Closed Circular DNA.

Viruses

December 2024

The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.

Hepatitis B virus (HBV) can cause chronic infections, significantly increasing the risk of death from cirrhosis and hepatocellular carcinoma (HCC). A key player in chronic HBV infection is covalently closed circular DNA (cccDNA), a stable episomal form of viral DNA that acts as a persistent reservoir in infected hepatocytes and drives continuous viral replication. Despite the development of several animal models, few adequately replicate cccDNA formation and maintenance, limiting our understanding of its dynamics and the evaluation of potential therapeutic interventions targeting cccDNA.

View Article and Find Full Text PDF

Epigenetic Drift Is Involved in the Efficacy of HBV Vaccination.

Vaccines (Basel)

November 2024

Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy.

: HBV infections can lead to serious liver complications that can have fatal consequences. In 2022, around 1.1 million individuals died from HBV-related cirrhosis and hepatocellular carcinoma.

View Article and Find Full Text PDF

A Signal-On Microelectrode Electrochemical Aptamer Sensor Based on AuNPs-MXene for Alpha-Fetoprotein Determination.

Sensors (Basel)

December 2024

Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China.

As a crucial biomarker for the early warning and prognosis of liver cancer diseases, elevated levels of alpha-fetoprotein (AFP) are associated with hepatocellular carcinoma and germ cell tumors. Herein, we present a novel signal-on electrochemical aptamer sensor, utilizing AuNPs-MXene composite materials, for sensitive AFP quantitation. The AuNPs-MXene composite was synthesized through a simple one-step method and modified on portable microelectrodes.

View Article and Find Full Text PDF

The present study aimed to explore an ideal delivery system for triptolide (TPL) by utilizing the thin-film hydration method to prepare drug-loaded, folate-modified mixed pluronic micelles (FA-F-127/F-68-TPL). Scanning electron microscopy and atomic force microscopy showed that the drug-loaded micelles had a spherical shape with a small particle size, with an average of 30.7 nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!