Sulfonamide and tetracycline resistance genes in total- and culturable-bacterial assemblages in South African aquatic environments.

Front Microbiol

Coastal Systems Research Group, Natural Resources and the Environment, The Council for Scientific and Industrial Research Durban, South Africa.

Published: August 2015

Antibiotic resistant bacteria are ubiquitous in the natural environment. The introduction of effluent derived antibiotic resistance genes (ARGs) into aquatic environments is of concern in the spreading of genetic risk. This study showed the prevalence of sulfonamide and tetracycline resistance genes, sul1, sul2, sul3, and tet(M), in the total bacterial assemblage and colony forming bacterial assemblage in river and estuarine water and sewage treatment plants (STP) in South Africa. There was no correlation between antibiotic concentrations and ARGs, suggesting the targeted ARGs are spread in a wide area without connection to selection pressure. Among sul genes, sul1 and sul2 were major genes in the total (over 10(-2) copies/16S) and colony forming bacteria assemblages (∼10(-1) copies/16S). In urban waters, the sul3 gene was mostly not detectable in total and culturable assemblages, suggesting sul3 is not abundant. tet(M) was found in natural assemblages with 10(-3) copies/16S level in STP, but was not detected in colony forming bacteria, suggesting the non-culturable (yet-to-be cultured) bacterial community in urban surface waters and STP effluent possess the tet(M) gene. Sulfamethoxazole (SMX) resistant (SMX(r)) and oxytetracycline (OTC) resistant (OTC(r)) bacterial communities in urban waters possessed not only sul1 and sul2 but also sul3 and tet(M) genes. These genes are widely distributed in SMX(r) and OTC(r) bacteria. In conclusion, urban river and estuarine water and STP effluent in the Durban area were highly contaminated with ARGs, and the yet-to-be cultured bacterial community may act as a non-visible ARG reservoir in certain situations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4523819PMC
http://dx.doi.org/10.3389/fmicb.2015.00796DOI Listing

Publication Analysis

Top Keywords

resistance genes
12
sul1 sul2
12
colony forming
12
sulfonamide tetracycline
8
tetracycline resistance
8
aquatic environments
8
genes sul1
8
sul2 sul3
8
sul3 tetm
8
bacterial assemblage
8

Similar Publications

Pontederia cordata L. is an aquatic ornamental plant native to the Americas, but has been widely distributed in South Asia, Australia, and Europe. The genetic mechanisms behind its rapid adaptation and spread have not yet been well understood.

View Article and Find Full Text PDF

Multidrug-resistant Typhimurium has emerged as a global public health concern. Asymptomatic gastrointestinal carriage is a key factor in the spread of antibiotic-resistant bacteria. However, it is challenging to obtain direct evidence of transfer of mobile genetic elements (MGEs).

View Article and Find Full Text PDF

Citrus transcription factor CsERF1 is involved in the response to citrus tristeza disease.

Front Plant Sci

January 2025

National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University/Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing, China.

Introduction: Citrus tristeza virus (CTV) is a threat to the citrus production and causes severe economic losses to the citrus industry. Ethylene response factors (ERFs) play important roles in plant growth and stress responses. Although ERF genes have been widely studied in model plants, little is known about their role in biological stress responses in fruit trees, such as citrus.

View Article and Find Full Text PDF

Drought stress inhibits Bunge () seedling growth and yield. Here, we studied the effects of drought stress on the different parts of seedlings through physiological, transcriptomic, and metabolomics analyses, and identified key genes and metabolites related to drought tolerance. Physiological analysis showed that drought stress increased the accumulation of hydrogen peroxide (HO), enhanced the activity of peroxidase (POD), decreased the activity of catalase (CAT) and the contents of chlorophyll b and total chlorophyll, reduced the degree of photosynthesis, enhanced oxidative damage in seedlings, and inhibited the growth of plants.

View Article and Find Full Text PDF

Gliomas are the most common lethal tumors of the brain associated with a poor prognosis and increased resistance to chemo-radiotherapy. Circular RNAs (circRNAs), newly identified noncoding RNAs, have appeared as critical regulators of therapeutic resistance among multiple cancers and gliomas. Since circRNAs are aberrantly expressed in glioma and may act as promoters or inhibitors of therapeutic resistance, we categorized alterations of these specific RNAs expression in therapy resistant-glioma in three different classes, including chemoresistance, radioresistance, and glioma stem cell (GSC)-regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!