Beyond phage display: non-traditional applications of the filamentous bacteriophage as a vaccine carrier, therapeutic biologic, and bioconjugation scaffold.

Front Microbiol

Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC Canada ; Faculty of Health Sciences, Simon Fraser University, Burnaby BC, Canada.

Published: August 2015

For the past 25 years, phage display technology has been an invaluable tool for studies of protein-protein interactions. However, the inherent biological, biochemical, and biophysical properties of filamentous bacteriophage, as well as the ease of its genetic manipulation, also make it an attractive platform outside the traditional phage display canon. This review will focus on the unique properties of the filamentous bacteriophage and highlight its diverse applications in current research. Particular emphases are placed on: (i) the advantages of the phage as a vaccine carrier, including its high immunogenicity, relative antigenic simplicity and ability to activate a range of immune responses, (ii) the phage's potential as a prophylactic and therapeutic agent for infectious and chronic diseases, (iii) the regularity of the virion major coat protein lattice, which enables a variety of bioconjugation and surface chemistry applications, particularly in nanomaterials, and (iv) the phage's large population sizes and fast generation times, which make it an excellent model system for directed protein evolution. Despite their ubiquity in the biosphere, metagenomics work is just beginning to explore the ecology of filamentous and non-filamentous phage, and their role in the evolution of bacterial populations. Thus, the filamentous phage represents a robust, inexpensive, and versatile microorganism whose bioengineering applications continue to expand in new directions, although its limitations in some spheres impose obstacles to its widespread adoption and use.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4523942PMC
http://dx.doi.org/10.3389/fmicb.2015.00755DOI Listing

Publication Analysis

Top Keywords

phage display
12
filamentous bacteriophage
12
vaccine carrier
8
properties filamentous
8
phage
6
filamentous
5
display non-traditional
4
applications
4
non-traditional applications
4
applications filamentous
4

Similar Publications

Influenza remains a persistent global health challenge, largely due to the virus' continuous antigenic drift and occasional shift, which impede the development of a universal vaccine. To address this, the identification of broadly neutralizing antibodies and their epitopes is crucial. Nanobodies, with their unique characteristics and binding capacity, offer a promising avenue to identify such epitopes.

View Article and Find Full Text PDF

Lateral flow immunoassay (LFIA) has the advantages of simplicity and rapidness, and is widely used for the rapid detection of pesticides and other analytes. However, small molecule compounds such as pesticides are often analyzed using competitive LFIA (CLFIA), whose sensitivity often does not meet the actual needs. In this study, a noncompetitive LFIA (NLFIA) for deltamethrin (DM) with high sensitivity was developed by using anti-immunocomplex peptides (AIcPs).

View Article and Find Full Text PDF

Background: Ecotoxicology is essential for the evaluation and comprehension of the effects of emergency pollutants (EP) such as heavy metal ions on the natural environment. EPs pose a substantial threat to the health of humans and the proper functioning of the global ecosystem. The primary concern is the exposure of humans and animals to heavy metal ions through contaminated water.

View Article and Find Full Text PDF

2-Cyanopyrimidine-Containing Molecules for N-Terminal Selective Cyclization of Phage-Displayed Peptides.

ACS Chem Biol

January 2025

Texas A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States.

Current methods for the macrocyclization of phage-displayed peptides often rely on small molecule linkers that nonspecifically react with targeted amino acid residues. To expand tool kits for more regioselective macrocyclization of phage-displayed peptides, this study explores the unique condensation reaction between an N-terminal cysteine and nitrile along with the reactivity of an internal cysteine. Five 2-cyanopyrimidine derivatives were synthesized for this purpose and evaluated for their selective macrocyclization of a protein-fused model peptide.

View Article and Find Full Text PDF

Cancer continues to represent a substantial burden in terms of its morbidity and mortality, underscoring the imperative for the development of novel and efficacious treatment modalities. Recent advances in cancer immunotherapy have highlighted the importance of identifying tumour-specific antigens, which can assist the immune system in targeting malignant cells effectively. Phage display technology has emerged as an effective tool for the discovery of novel antigens through cDNA library screening, representing a significant advancement in the field of immunological research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!