MicroRNA regulation of the major drug-metabolizing enzymes and related transcription factors.

Drug Metab Rev

b Department of Pharmaceutical Sciences , Washington State University, Spokane , WA , USA.

Published: August 2015

Identifying novel mechanisms contributing to patient variability of drug response is a major goal of personalized medicine. Epigenetic regulation of gene expression by microRNA (miRNA) impacts a broad range of cellular processes, but knowledge of its regulation of drug-metabolizing enzymes (DMEs) is more limited. This review provides an introduction to miRNA and their functionality and summarizes known miRNA regulation of DME families, including the cytochrome P450s, UDP-glucuronoslytransferases, glutathione-S-transferases, sulfotransferases and aldo-keto reductases, and the transcription factors known to be involved in DME regulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6309899PMC
http://dx.doi.org/10.3109/03602532.2015.1076438DOI Listing

Publication Analysis

Top Keywords

drug-metabolizing enzymes
8
transcription factors
8
microrna regulation
4
regulation major
4
major drug-metabolizing
4
enzymes transcription
4
factors identifying
4
identifying novel
4
novel mechanisms
4
mechanisms contributing
4

Similar Publications

The kinetically-derived maximal dose (KMD) is defined as the maximum external dose at which kinetics are unchanged relative to lower doses, e.g., doses at which kinetic processes are not saturated.

View Article and Find Full Text PDF

A new series of 13 ritonavir-like inhibitors of human drug-metabolizing CYP3A4 was rationally designed to study the R side-group and R end-group interplay when the R side-group is represented by phenyl. Spectral, functional, and structural characterization showed no improvement in the binding affinity and inhibitory potency of R/R-phenyl inhibitors upon elongation and/or fluorination of R-Boc (tert-butyloxycarbonyl) or its replacement with benzenesulfonyl. When R is pyridine, the impact of R-phenyl-to-indole/naphthalene substitution was multidirectional and highly dependent on side-group stereo configuration.

View Article and Find Full Text PDF

OATP1B, P-gp, BCRP, and CYP3A are the most contributing drug-metabolizing enzymes or transporters (DMETs) for commonly prescribed medication. Their activities may change in end-stage renal disease (ESRD) patients with large inter-individual variabilities (IIVs), leading to altered substrate drug exposure and ultimately elevated safety risk. However, the changing extent and indictive influencing factors are not quantified so far.

View Article and Find Full Text PDF

Background: Cefotaxime is a widely prescribed cephalosporin antibiotic used to treat various infections. It is mainly eliminated unchanged by the kidney through tubular secretion and glomerular filtration. Therefore, a reduction of kidney function may increase exposure to the drug and induce toxic side effects.

View Article and Find Full Text PDF

Positioning Enzyme- and Transporter-Based Precipitant Drug-Drug Interaction Studies in Drug Design.

J Med Chem

January 2025

Department of Pharmacokinetics Dynamics & Metabolism, Pfizer Inc., Groton, Connecticut 06340, United States.

assessment of the potential of compounds to affect drug metabolizing enzymes and transporters and perpetrate drug-drug interactions (DDIs) is a common practice in drug research. For the development phase, regulators define an exhaustive list of enzymes and transporters to consider, but DDIs associated with many of these are minor and can be well-managed in the clinic; thus, progression of drug candidates that address unmet medical needs should not be curtailed due to this property. However, some enzymes and transporters are very important in drug disposition, so it is important to avoid/reduce inhibition or induction of these through drug design.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!