Background: Mycotoxin-contaminated feed is very dangerous for the growth and even life of poultry. The objective of the current study was to investigate the efficacy of ultra-violet irradiation for decontamination of ochratoxin A (OTA) in spiked and naturally contaminated poultry feed samples. Spiked and naturally contaminated feed samples were irradiated with ultra-violet light (UV) at distance of 25 cm over the feed samples. In vitro, the effect of UV intensity (0.1 mW cm(-2) at 254 nm UV-C) on different types of poultry feeds contaminated with OTA was evaluated. The same samples were also irradiated with sunlight and analysed for OTA by an indirect enzyme linked immunosorbent assay method.

Results: Poultry feed samples containing 500 µg kg(-1) were 100% decontaminated in 180 min with UV radiation while OTA was decreased to 70-95 µg kg(-1) using the same poultry feed samples after 8 h sunlight irradiation. Therefore, UV light was found to be more effective. Only 1 h of UV irradiation was found to be sufficient to bring the OTA level to the maximum regulatory limit suggested for poultry feeds (100 µg kg(-1) ), while 8 h were needed to obtain this level using sunlight radiations.

Conclusion: The proposed approach is a viable option to reduce the level of OTA in contaminated poultry feeds. © 2015 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.7384DOI Listing

Publication Analysis

Top Keywords

feed samples
20
poultry feed
16
poultry feeds
12
µg kg-1
12
spiked naturally
8
naturally contaminated
8
contaminated poultry
8
samples irradiated
8
feed
7
poultry
7

Similar Publications

Antioxidant activity analysis of new interspecific hybrid germplasm thyme and oregano essential oils with different chemotypes.

BMC Plant Biol

January 2025

State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.

Thyme and oregano essential oils (EOs) and their components have numerous applications in the pharmaceutical, food, and cosmetic industries owing to their antioxidant, antibacterial, antifungal, anti-inflammatory, antiviral, and immunological properties. We attempted to create new chemotypes through the hybridization of thyme and oregano for functional EO research and product development. Here, we used interspecific hybridization to create new thyme and oregano germplasms with new EO chemotypes.

View Article and Find Full Text PDF

An experiment was conducted for 60 days in a 500L capacity FRP tank containing inland ground saline water (fortified to a level of 50% potassium) with one control (sediment) and three treatments; T1(Paddy Straw Biochar (PSB) in sediment), T2 (Banana Peduncle Biochar (BPB) in sediment), and T3 (PSB + BPB in sediment). Biochar (100 g) was amended with sediment (25 kg) at 9 tons/ha. Shrimps of average weight 5 ± 0.

View Article and Find Full Text PDF

Identification of 3-methoxytyramine as a specific biomarker for beet-sugar-fed honey: A two year surveillance study in South Korea.

Food Res Int

January 2025

New Hazardous Substances Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju, Chungcheongbuk-do 28159, Republic of Korea. Electronic address:

Honey is highly vulnerable to food fraud, and there are growing concerns about product authenticity. The commonly used stable carbon isotope ratios in the Calvin (C3) and Hatch-Slack (C4) photosynthesis cycles in plant feed cannot distinguish between beet-sugar-fed honey and natural honey. However, 3-methoxytyramine (3-MT) can be used as specific biomarker for identifying adulteration of beet-sugar-fed honey.

View Article and Find Full Text PDF

Methane emissions from ruminant digestion contribute significantly to global anthropogenic greenhouse gas emissions. Members of the phylum Rhodophyta (red algae), particularly Asparagopsis sp., have shown promising results in reducing methane emissions in ruminants, due to their high content of halogenated methane analog compounds.

View Article and Find Full Text PDF

Hesperidin enhances broiler growth performance by augmenting gastric acid secretion via the proton pump pathway.

Poult Sci

January 2025

College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Changchun 130118, China; Jilin Key Laboratory of Animal Nutrition and Feed Science, Changchun 130118, China. Electronic address:

Hesperidin exhibits promising potential as a feed additive for augmenting gastric acid secretion in animals. Gastrointestinal function is essential for animal growth and the efficient digestion of dietary nutrients, with gastric acid secretion serving as one of its critical components. The secretion of gastric acid, together with other digestive fluids and substances, significantly influences the digestion and absorption of animal feed, which in turn affects growth performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!