Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: The dietary pigment curcumin is a natural polyphenol extracted from the Curcuma longa rhizomes native to South Asia. The antioxidative, antimicrobial, and anti-inflammatory activities besides its unknown side effects suggest that curcumin could be a promising antiresorptive agent to prevent replacement resorption in replanted teeth after traumatic avulsion. Piperine, an alkaloid present in black pepper, seems to enhance the bioavailability and activity of curcumin. Therefore, this study evaluated the biocompatibility of curcumin and piperine in cultures of periodontal ligament cells as well as their effects in an in vitro osteoclastogenesis model of RAW 264.7 macrophages.
Methods: The cytotoxicity in human periodontal ligament fibroblasts, human osteogenic sarcoma cells (SAOS-2), and murine osteoclastic precursors (RAW 264.7) was analyzed by using cell number determination and proliferation assays. The ability of curcumin and its conjugate to suppress the receptor activator of nuclear factor kappa B ligand-induced osteoclastogenesis was assessed by tartrate-resistant acid phosphatase (TRAP) staining and activity as well as real-time polymerase chain reaction.
Results: Curcumin at concentrations ≥ 10 μmol/L was cytotoxic in all cell types tested, whereas piperine showed only slight cytotoxicity at 30 μmol/L in RAW and SAOS cultures. Although curcumin caused already significant effects, the combination with piperine completely suppressed the osteoclastogenesis by decreasing the TRAP activity and inhibiting the expression of the specific osteoclast markers TRAP, cathepsin K, and calcitonin receptor.
Conclusions: We demonstrated that curcumin combined with piperine suppressed the osteoclastogenesis in vitro without causing cytotoxic effects in periodontal ligament cells. These findings suggest its potential therapeutic application for the prevention and treatment of replacement resorption in replanted avulsed teeth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.joen.2015.05.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!