This paper investigates the impact of trade openness on CO2 emissions using time series data over the period of 1970QI-2011QIV for Malaysia. We disintegrate the trade effect into scale, technique, composition, and comparative advantage effects to check the environmental consequence of trade at four different transition points. To achieve the purpose, we have employed augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) unit root tests in order to examine the stationary properties of the variables. Later, the long-run association among the variables is examined by applying autoregressive distributed lag (ARDL) bounds testing approach to cointegration. Our results confirm the presence of cointegration. Further, we find that scale effect has positive and technique effect has negative impact on CO2 emissions after threshold income level and form inverted U-shaped relationship-hence validates the environmental Kuznets curve hypothesis. Energy consumption adds in CO2 emissions. Trade openness and composite effect improve environmental quality by lowering CO2 emissions. The comparative advantage effect increases CO2 emissions and impairs environmental quality. The results provide the innovative approach to see the impact of trade openness in four sub-dimensions of trade liberalization. Hence, this study attributes more comprehensive policy tool for trade economists to better design environmentally sustainable trade rules and agreements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-015-5217-9 | DOI Listing |
Environ Pollut
January 2025
Testing Center for Oil and Gas LEMIGAS, Ministry of Energy and Mineral Resources, Jakarta Selatan 12230 Indonesia.
Indonesia currently calculates CO emissions from gas fuels using Tier 1 emission factors adopted from the Intergovernmental Panel on Climate Change (IPCC). However, this method may not accurately capture the country's specific emission characteristics. To address this, this study aims to derive country-specific CO emission factors for gas fuels, including liquefied petroleum gas (LPG), liquefied gas for vehicles (LGV), natural gas (NG), and liquefied natural gas (LNG), by analyzing fuel samples collected nationwide.
View Article and Find Full Text PDFChem Soc Rev
January 2025
Department of Chemistry, Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310027, China.
Carbon dioxide capture has attracted worldwide attention because CO emissions cause global warming and exacerbate climate change. Ionic liquids (ILs) have good application prospects in carbon capture due to their excellent properties, which provide a new chance to develop efficient and reversible carbon capture systems. This paper reviews the recent progress in CO chemical absorption by ILs, such as N-site, O-site, C-site, and multi-site functionalized ILs.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Mechanical Engineering, Addis Ababa Science and Technology University, Addis Ababa, 16417, Ethiopia.
Many approaches have been implemented in order to reduce the emissions of particular pollutants without compromising engine performance. Cotton and castor mixed seed oil was chosen for the current study due to their distinct fatty acid composition and potential as a feedstock for bio-additives. Three fuel samples-99 % diesel and 1 % blended fuel (cottonseed oil + castor seed oil), 99.
View Article and Find Full Text PDFHeliyon
January 2025
Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.
The estimation of CO emission factors (EFs) is a key step in calculating automobile CO emissions. However, city-level research on the integrated estimation of vehicle CO EFs under real conditions is insufficient. To enrich the research methods of city-level vehicle CO EFs, this paper constructs a vehicle-road-driver three-layer regression model and estimates vehicle CO EFs empirical parameters for Tianjin.
View Article and Find Full Text PDFChem Soc Rev
January 2025
Birmingham Centre for Energy Storage & School of Chemical Engineering, University of Birmingham, UK.
This review explores the behavior of low-concentration CO (LCC) in various energy media, such as solid adsorbents, liquid absorbents, and catalytic surfaces. It delves into the mechanisms of diffusion, adsorption, and catalytic reactions, while analyzing the potential applications and challenges of these properties in technologies like air separation, compressed gas energy storage, and CO catalytic conversion. Given the current lack of comprehensive analyses, especially those encompassing multiscale studies of LCC behavior, this review aims to provide a theoretical foundation and data support for optimizing CO capture, storage, and conversion technologies, as well as guidance for the development and application of new materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!