Proapoptotic BAX protein is largely cytosolic in healthy cells, but it oligomerizes and translocates to mitochondria upon receiving apoptotic stimuli. A long-standing challenge has been the inability to capture any structural information beyond the onset of activation. Here, we present solution structures of an activated BAX oligomer by means of spectroscopic and scattering methods, providing details about the monomer-monomer interfaces in the oligomer and how the oligomer is assembled from homodimers. We show that this soluble oligomer undergoes a direct conversion into membrane-inserted oligomer, which has the ability of inducing apoptosis and structurally resembles a membrane-embedded oligomer formed from BAX monomers in lipid environment. Structural differences between the soluble and the membrane-inserted oligomers are manifested in the C-terminal helices. Our data suggest an alternative pathway of apoptosis in which BAX oligomer formation occurs prior to membrane insertion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.str.2015.07.013 | DOI Listing |
Background: One of the hallmarks of Alzheimer's disease (AD) is the buildup of amyloid beta-42 (Aβ-42) in the brain, which leads to various adverse effects. Therefore, therapeutic interventions proficient in reducing Aβ-42-induced toxicity in AD are of great interest. One promising approach is to use extracellular vesicles from human induced pluripotent stem cell-derived neural stem cells (hiPSC-NSC-EVs) because they carry multiple therapeutic miRNAs and proteins capable of protecting neurons against Aβ-42-induced pathological changes.
View Article and Find Full Text PDFCell Rep
May 2024
Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China. Electronic address:
Cardiac dysfunction, an early complication of endotoxemia, is the major cause of death in intensive care units. No specific therapy is available at present for this cardiac dysfunction. Here, we show that the N-terminal gasdermin D (GSDMD-N) initiates mitochondrial apoptotic pore and cardiac dysfunction by directly interacting with cardiolipin oxidized by complex II-generated reactive oxygen species (ROS) during endotoxemia.
View Article and Find Full Text PDFCell Death Dis
May 2024
Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
Pirh2 is an E3 ubiquitin ligase known to regulate the DNA damage responses through ubiquitylation of various participating signaling factors. DNA damage is a key pathological contributor to Alzheimer's disease (AD), therefore, the role of Pirh2 was investigated in streptozotocin and oligomer Aβ induced rodent experimental model of AD. Pirh2 protein abundance increased during AD conditions, and transient silencing of Pirh2 inhibited the disease-specific pathological markers like level of p-Tau, βamyloid, acetylcholinesterase activity, and neuronal death.
View Article and Find Full Text PDFCell Death Discov
April 2024
National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.
The neurotoxic α-synuclein (α-syn) oligomers play an important role in the occurrence and development of Parkinson's disease (PD), but the factors affecting α-syn generation and neurotoxicity remain unclear. We here first found that thrombomodulin (TM) significantly decreased in the plasma of PD patients and brains of A53T α-syn mice, and the increased TM in primary neurons reduced α-syn generation by inhibiting transcription factor p-c-jun production through Erk1/2 signaling pathway. Moreover, TM decreased α-syn neurotoxicity by reducing the levels of oxidative stress and inhibiting PAR1-p53-Bax signaling pathway.
View Article and Find Full Text PDFJ Control Release
March 2024
Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China. Electronic address:
Melanoma, one of the most devastating forms of skin cancer, currently lacks effective clinical treatments. Delivery of functional genes to modulate specific protein expression to induce melanoma cell apoptosis could be a promising therapeutic approach. However, transfecting melanoma cells using non-viral methods, particularly with cationic polymers, presents significant challenges.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!