A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nodal centrality of functional network in the differentiation of schizophrenia. | LitMetric

AI Article Synopsis

  • A disturbance in how the brain processes information has been linked to schizophrenia, likely due to poor communication within brain areas.
  • Researchers used graph theory to analyze functional brain networks based on resting state fMRI scans of 19 schizophrenia patients and 29 non-psychiatric controls.
  • They found that a measure called betweenness centrality effectively distinguished between the two groups with about 80% accuracy, suggesting that changes in brain network hubs are related to schizophrenia.

Article Abstract

A disturbance in the integration of information during mental processing has been implicated in schizophrenia, possibly due to faulty communication within and between brain regions. Graph theoretic measures allow quantification of functional brain networks. Functional networks are derived from correlations between time courses of brain regions. Group differences between SZ and control groups have been reported for functional network properties, but the potential of such measures to classify individual cases has been little explored. We tested whether the network measure of betweenness centrality could classify persons with schizophrenia and normal controls. Functional networks were constructed for 19 schizophrenic patients and 29 non-psychiatric controls based on resting state functional MRI scans. The betweenness centrality of each node, or fraction of shortest-paths that pass through it, was calculated in order to characterize the centrality of the different regions. The nodes with high betweenness centrality agreed well with hub nodes reported in previous studies of structural and functional networks. Using a linear support vector machine algorithm, the schizophrenia group was differentiated from non-psychiatric controls using the ten nodes with the highest betweenness centrality. The classification accuracy was around 80%, and stable against connectivity thresholding. Better performance was achieved when using the ranks as feature space as opposed to the actual values of betweenness centrality. Overall, our findings suggest that changes in functional hubs are associated with schizophrenia, reflecting a variation of the underlying functional network and neuronal communications. In addition, a specific network property, betweenness centrality, can classify persons with SZ with a high level of accuracy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4591247PMC
http://dx.doi.org/10.1016/j.schres.2015.08.011DOI Listing

Publication Analysis

Top Keywords

betweenness centrality
24
functional network
12
functional networks
12
functional
9
brain regions
8
centrality classify
8
classify persons
8
non-psychiatric controls
8
centrality
7
betweenness
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: