The tumor microenvironment is an interesting target for anticancer therapies but modifying this compartment is challenging. Here, we demonstrate the feasibility of a gene therapy strategy that combined targeting to bone marrow-derived tumor microenvironment using genetically modified bone-marrow derived cells and control of transgene expression by local hyperthermia through a thermo-inducible promoter. Chimera were obtained by engraftment of bone marrow from transgenic mice expressing reporter genes under transcriptional control of heat shock promoter and inoculated sub-cutaneously with tumors cells. Heat shocks were applied at the tumor site using a water bath or magnetic resonance guided high intensity focused ultrasound device. Reporter gene expression was followed by bioluminescence and fluorescence imaging and immunohistochemistry. Bone marrow-derived cells expressing reporter genes were identified to be mainly tumor-associated macrophages. We thus provide the proof of concept for a gene therapy strategy that allows for spatiotemporal control of transgenes expression by macrophages targeted to the tumor microenvironment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4695127PMC
http://dx.doi.org/10.18632/oncotarget.4288DOI Listing

Publication Analysis

Top Keywords

tumor microenvironment
16
spatiotemporal control
8
gene expression
8
bone-marrow derived
8
derived cells
8
focused ultrasound
8
gene therapy
8
therapy strategy
8
bone marrow-derived
8
expressing reporter
8

Similar Publications

Background: Highly frequent colorectal cancer (CRC) is predicted to have 3.2 million novel cases by 2040. Tumor microenvironment (TME) bacteriome and metabolites are proposed to be involved in CRC development.

View Article and Find Full Text PDF

Recent advances in oncology research have highlighted the promising synergy between low-dose radiation therapy (LDRT) and immunotherapies, with growing evidence highlighting the unique benefits of the combination. LDRT has emerged as a potent tool for stimulating the immune system, triggering systemic antitumor effects by remodeling the tumor microenvironment. Notably, LDRT demonstrates remarkable efficacy even in challenging metastatic sites such as the liver (uveal) and brain (cutaneous), particularly in advanced melanoma stages.

View Article and Find Full Text PDF

Background: Diseases are often caused by multiple factors, angiogenesis-related genes (ARGs) have been shown to be associated with cancer, however, their role in colon cancer had not been fully explored. This study investigated potential biomarkers based on ARGs to improve prognosis and treatment effect in colon cancer.

Methods: ARGs associated with colon cancer prognosis were identified using Cox regression analysis and LASSO analysis.

View Article and Find Full Text PDF

Integrating single-cell RNA and T cell/B cell receptor sequencing with mass cytometry reveals dynamic trajectories of human peripheral immune cells from birth to old age.

Nat Immunol

January 2025

Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China.

A comprehensive understanding of the evolution of the immune landscape in humans across the entire lifespan at single-cell transcriptional and protein levels, during development, maturation and senescence is currently lacking. We recruited a total of 220 healthy volunteers from the Shanghai Pudong Cohort (NCT05206643), spanning 13 age groups from 0 to over 90 years, and profiled their peripheral immune cells through single-cell RNA-sequencing coupled with single T cell and B cell receptor sequencing, high-throughput mass cytometry, bulk RNA-sequencing and flow cytometry validation experiments. We revealed that T cells were the most strongly affected by age and experienced the most intensive rewiring in cell-cell interactions during specific age.

View Article and Find Full Text PDF

Tissue microenvironments are extremely complex and heterogeneous. It is challenging to study metabolic interaction between the different cell types in a tissue with the techniques that are currently available. Here we describe a multimodal imaging pipeline that allows cell type identification and nanoscale tracing of stable isotope-labeled compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!