This study is the first that focuses on solvent migration in a polydimethylsiloxane (PDMS) stamp during the imprint lithography of ZnO-poly(methyl methacrylate) (PMMA) hybrid suspensions. Using suspensions with varying solids loading levels and ZnO/PMMA ratios, the uptake of the anisole solvent in the stamp is evaluated as a function of time. Laser confocal microscopy is employed as a unique technique to measure the penetration depth of the solvent into the stamp. The suspension solids loading affects the anisole saturation depth in the PDMS stamp. For the suspensions with low solids loading, the experimental data agree with the model for non-Fickian diffusion through a rubbery-elastic polymer. For the suspensions with high solids loading, the data agree more with a sigmoidal diffusion curve, reflecting the rubbery-viscous behavior of a swelling polymer. This difference is due to the degree of swelling in the PDMS. Higher solids loadings induce more swelling because the rate of anisole diffusing into the stamp is increased, likely due to the less dense buildup of the solids as the suspension dries.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.5b02617DOI Listing

Publication Analysis

Top Keywords

solids loading
16
imprint lithography
8
pdms stamp
8
solvent stamp
8
data agree
8
solids
6
stamp
5
experimental modeling
4
modeling study
4
solvent
4

Similar Publications

Valsartan (VST) is an angiotensin II receptor antagonist with low oral bioavailability. The present study developed a solid self-nanoemulsifying drug delivery system (S-SNEDDS) to enhance the oral absorption and bioavailability of VST. VST-loaded liquid SNEDDS (VST@L-SNEDDS) was prepared by investigating the solubility of VST and constructing the pseudo-ternary phase diagrams.

View Article and Find Full Text PDF

Mechanistic Insights into Amorphous Solid Dispersions: Bridging Theory and Practice in Drug Delivery.

Pharm Res

January 2025

Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India.

Improving the bioavailability  of poorly water-soluble drugs presents a significant challenge in pharmaceutical development. Amorphous solid dispersions (ASDs) have garnered substantial attention for their capability to augment the solubility and dissolution rate of poorly water-soluble drugs, thereby markedly enhancing their bioavailability. ASDs, characterized by a metastable equilibrium where the active pharmaceutical ingredient (API) is molecularly dispersed, offer enhanced absorption compared to crystalline forms.

View Article and Find Full Text PDF

Microneedle patch-involved local therapy synergized with immune checkpoint inhibitor for pre- and post-operative cancer treatment.

J Control Release

January 2025

State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China; NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, PR China. Electronic address:

The metastasis and recurrence of cancer post-surgery remain the major reasons for treatment failures. Herein, a photo-immune nanoparticle decorating with M1 macrophage membrane (BD@LM) is designed based on the inflammatory environment after surgical resection. By loading photosensitizer black phosphorus quantum dots (BPQDs) and chemotherapeutics doxorubicin (DOX) in BD@LM nanoparticles, an effective chemophototherapy-mediated immunogenic cell death of tumor cells is triggered, subsequently leading to the maturation of dendritic cells for further immune cascade.

View Article and Find Full Text PDF

Lipid core-chitosan shell hybrid nanoparticles for enhanced oral bioavailability of sorafenib.

Int J Biol Macromol

January 2025

College of Pharmacy, Institute of Pharmaceutical Sciences and Technology, Hanyang University ERICA, Ansan 15588, Republic of Korea. Electronic address:

Limited aqueous solubility is a major hurdle resulting in poor and variable oral bioavailability, high doses, side effects, and the suboptimal therapeutic efficacy of sorafenib (SRF). In this study, we developed SRF-loaded solid lipid nanoparticles (SRF-SLNs) and lipid core-chitosan shell hybrid nanoparticles (CS-SRF-SLNs) to improve the oral absorption of SRF. SRF-SLNs were prepared using a stearyl alcohol core stabilized with a surfactant mixture, followed by surface decoration with chitosan to form CS-SRF-SLNs.

View Article and Find Full Text PDF

An injectable nanocomposite hydrogel with deep penetration ability for enhanced photothermal and chemotherapy.

J Colloid Interface Sci

January 2025

Key Laboratory for Organic Electronics and Information Displays (KLOEID), Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023 China. Electronic address:

The excessive extracellular matrix (ECM) in solid tumors significantly inhibits the deep penetration and homogeneous distribution of nanodrugs, which greatly reduces the therapeutic efficacy. In the present work, an injectable polyelectrolyte hydrogel (CD@IPH) containing collagenase and doxorubicin-loaded polyacrylic acid@polyaniline nanoparticles (DOX@NP) were developed for improved photothermal and chemotherapy. The collagenase is released quickly from the polyelectrolyte hydrogel in the first 12 h, effectively degrading ECM and enhancing the deep penetration and evenly distribution of DOX@NP in tumor tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!