Multi-modality sparse representation-based classification for Alzheimer's disease and mild cognitive impairment.

Comput Methods Programs Biomed

College of Information Science and Technology, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.

Published: November 2015

AI Article Synopsis

  • The study aims to improve the differentiation between Alzheimer's disease (AD), mild cognitive impairment (MCI), and normal control (NC) using a multi-modality approach.
  • Researchers developed a new classification method called weighted multi-modality sparse representation-based classification (wmSRC) that integrates various types of neuroimaging data.
  • The wmSRC method achieved high accuracy rates in classifying AD and MCI, suggesting it could enhance the detection and treatment approach for these conditions.

Article Abstract

Background And Objective: The discrimination of Alzheimer's disease (AD) and its prodromal stage known as mild cognitive impairment (MCI) from normal control (NC) is important for patients' timely treatment. The simultaneous use of multi-modality data has been demonstrated to be helpful for more accurate identification. The current study focused on extending a multi-modality algorithm and evaluating the method by identifying AD/MCI.

Methods: In this study, sparse representation-based classification (SRC), a well-developed method in pattern recognition and machine learning, was extended to a multi-modality classification framework named as weighted multi-modality SRC (wmSRC). Data including three modalities of volumetric magnetic resonance imaging (MRI), fluorodeoxyglucose (FDG) positron emission tomography (PET) and florbetapir PET from the Alzheimer's disease Neuroimaging Initiative database were adopted for AD/MCI classification (113 AD patients, 110 MCI patients and 117 NC subjects).

Results: Adopting wmSRC, the classification accuracy achieved 94.8% for AD vs. NC, 74.5% for MCI vs. NC, and 77.8% for progressive MCI vs. stable MCI, superior to or comparable with the results of some other state-of-the-art models in recent multi-modality researches.

Conclusions: The wmSRC method is a promising tool for classification with multi-modality data. It could be effective for identifying diseases from NC with neuroimaging data, which could be helpful for the timely diagnosis and treatment of diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2015.08.004DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
12
sparse representation-based
8
representation-based classification
8
mild cognitive
8
cognitive impairment
8
multi-modality data
8
multi-modality
7
classification
6
mci
5
multi-modality sparse
4

Similar Publications

Background: Despite the increasing popularity of electronic devices, the longitudinal effects of daily prolonged electronic device usage on brain health and the aging process remain unclear.

Objective: The aim of this study was to investigate the impact of the daily use of mobile phones/computers on the brain structure and the risk of neurodegenerative diseases.

Methods: We used data from the UK Biobank, a longitudinal population-based cohort study, to analyze the impact of mobile phone use duration, weekly usage time, and playing computer games on the future brain structure and the future risk of various neurodegenerative diseases, including all-cause dementia (ACD), Alzheimer disease (AD), vascular dementia (VD), all-cause parkinsonism (ACP), and Parkinson disease (PD).

View Article and Find Full Text PDF

Dementia clinical trials often fail to include diverse and historically minoritized groups. We sought to adapt the Alzheimer's Disease and Related Dementias-Palliative Care (ADRD-PC) clinical trial to improve enrollment and address the cultural needs of people with late-stage ADRD who identify as Hispanic or Latino and their family caregivers. Bilingual, bicultural research team members adapted study materials and processes using the Cultural Adaptation Process Model.

View Article and Find Full Text PDF

Prion Protein Endoproteolysis: Cleavage Sites, Mechanisms and Connections to Prion Disease.

J Neurochem

January 2025

Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada.

Highly abundant in neurons, the cellular prion protein (PrP) is an obligatory precursor to the disease-associated misfolded isoform denoted PrP that accumulates in the rare neurodegenerative disorders referred to either as transmissible spongiform encephalopathies (TSEs) or as prion diseases. The ability of PrP to serve as a substrate for this template-mediated conversion process depends on several criteria but importantly includes the presence or absence of certain endoproteolytic events performed at the cell surface or in acidic endolysosomal compartments. The major endoproteolytic events affecting PrP are referred to as α- and β-cleavages, and in this review we outline the sites within PrP at which the cleavages occur, the mechanisms potentially responsible and their relevance to pathology.

View Article and Find Full Text PDF

Background: Despite transcranial direct current stimulation (tDCS) has demonstrated encouraging potential for modulating the circadian rhythm, little is known about how well and sustainably tDCS might improve the subjective sleep quality in older adults. This study sought to determine how tDCS affected sleep quality and cognition, as well as how well pre-treatment sleep quality predicted tDCS effects on domain-specific cognitive functions in patients with mild neurocognitive disorder due to Alzheimer's disease (NCD-AD).

Methods: This clinical trial aimed to compare the effectiveness of tDCS and cognitive training in mild NCD-AD patients (n =  201).

View Article and Find Full Text PDF

The ε4 variant of human apolipoprotein E () is a key genetic risk factor for neurodegeneration in Alzheimer's disease and elevated all-cause mortality in humans. Understanding the factors and mechanisms that can mitigate the harmful effects of has significant implications. In this study, we find that inactivating the VHL-1 (Von Hippel-Lindau) protein can suppress mortality, neural and behavioral pathologies caused by transgenic human in .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!