Huntington's disease (HD) primarily affects striatum and prefrontal dopaminergic circuits which are fundamental neural correlates of the timekeeping mechanism. The few studies on HD mainly investigated motor timing performance in second durations. The present work explored time perception in early-to-moderate symptomatic HD patients for seconds and milliseconds with the aim to clarify which component of the scalar expectancy theory (SET) is mainly responsible for HD timing defect. Eleven HD patients were compared to 11 controls employing two separate temporal bisection tasks in second and millisecond ranges. Our results revealed the same time perception deficits for seconds and milliseconds in HD patients. Time perception impairment in early-to-moderate stages of Huntington's disease is related to memory deficits. Furthermore, both the non-systematical defect of temporal sensitivity and the main impairment of timing performance in the extreme value of the psychophysical curves suggested an HD deficit in the memory component of the SET. This result was further confirmed by the significant correlations between time perception performance and long-term memory test scores. Our findings added important preliminary data for both a deeper comprehension of HD time-keeping deficits and possible implications on neuro-rehabilitation practices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10072-015-2369-9 | DOI Listing |
Eur J Sport Sci
January 2025
Graduate Program in Human Movement Sciences, Institute of Health Sciences, Federal University of Pará, Belem, Brazil.
Executive functioning (EF) in referees is associated with their decision-making during a match and can be affected by mental fatigue (MF), a psychobiological state induced by prolonged periods of cognitive activity or high cognitive demand within a short timeframe. Therefore, the aim of this study was to investigate the impact of MF on EF and the perception of effort during a physical task for football referees. Twelve male professional football referees were recruited (32 ± 7.
View Article and Find Full Text PDFJ Pain Res
January 2025
NXTSTIM INC. Department of Pain Medicine, San Diego, CA, USA.
Transcutaneous Electrical Nerve Stimulation (TENS) and Electronic Muscle Stimulation (EMS) are non-invasive therapies widely used for pain relief and neuromuscular adaptation. However, the clinical research supporting the efficacy of TENS in chronic pain management is limited by significant methodological flaws, including small sample sizes and inconsistent reporting of stimulation parameters. TENS modulates pain perception through various techniques, targeting specific nerve fibers and pain pathways.
View Article and Find Full Text PDFBrain Commun
January 2025
Centre for Cognitive Neuroscience, University of Salzburg, 5020 Salzburg, Austria.
Former studies have established that individuals with a cochlear implant (CI) for treating single-sided deafness experience improved speech processing after implantation. However, it is not clear how each ear contributes separately to improve speech perception over time at the behavioural and neural level. In this longitudinal EEG study with four different time points, we measured neural activity in response to various temporally and spectrally degraded spoken words presented monaurally to the CI and non-CI ears (5 left and 5 right ears) in 10 single-sided CI users and 10 age- and sex-matched individuals with normal hearing.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
January 2025
Electrical and Computer Engineering Department, UCLA, Los Angeles, CA, USA.
Sensors for the perception of multimodal stimuli-ranging from the five senses humans possess and beyond-have reached an unprecedented level of sophistication and miniaturization, raising the prospect of making man-made large-scale complex systems that can rival nature a reality. Artificial intelligence (AI) at the edge aims to integrate such sensors with real-time cognitive abilities enabled by recent advances in AI. Such AI progress has only been achieved by using massive computing power which, however, would not be available in most distributed systems of interest.
View Article and Find Full Text PDFExp Brain Res
January 2025
Ashton Graybiel Spatial Orientation Laboratory, Brandeis University, MS 033, 415 South Street, Waltham, MA, 02453, USA.
Younger adults (YA) and older adults (OA) used a joystick to stabilize an unstable visual inverted pendulum (VIP) with a fundamental frequency (.27 Hz) of half that of bipedal human sway. Their task was to keep the VIP upright and to avoid ± 60° "fall" boundaries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!