Modeling has become an important tool for widening our understanding of microbial growth in the context of applied microbiology and related to such processes as safe food production, wastewater treatment, bioremediation, or microbe-mediated mining. Various modeling techniques, such as primary, secondary and tertiary mathematical models, phenomenological models, mechanistic or kinetic models, reactive transport models, Bayesian network models, artificial neural networks, as well as agent-, individual-, and particle-based models have been applied to model microbial growth and activity in many applied fields. In this mini-review, we summarize the basic concepts of these models using examples and applications from food safety and wastewater treatment systems. We further review recent developments in other applied fields focusing on models that explicitly include spatial relationships. Using these examples, we point out the conceptual similarities across fields of application and encourage the combined use of different modeling techniques in hybrid models as well as their cross-disciplinary exchange. For instance, pattern-oriented modeling has its origin in ecology but may be employed to parameterize microbial growth models when experimental data are scarce. Models could also be used as virtual laboratories to optimize experimental design analogous to the virtual ecologist approach. Future microbial growth models will likely become more complex to benefit from the rich toolbox that is now available to microbial growth modelers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-015-6877-6 | DOI Listing |
Food Chem
December 2024
Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China. Electronic address:
This study developed antimicrobial peptides (AMPs) from quinoa with high antibacterial activity and stability by mixed-bacteria fermentation. Furthermore, among 9 peptide fractions purified by membrane separation and chromatography, F1 could effectively inhibit the growth and propagation of bacterial microorganisms in apple juice. Subsequently, F1 identified LC-MS/MS as 95 peptides, molecular weights 494.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, United States of America.
Millions of tons of polyethylene terephthalate (PET) are produced each year, however only ~30% of PET is currently recycled in the United States. Improvement of PET recycling and upcycling practices is an area of ongoing research. One method for PET upcycling is chemical depolymerization (through hydrolysis or aminolysis) into aromatic monomers and subsequent biodegradation.
View Article and Find Full Text PDFMetabolites
December 2024
School of Food Science and Engineering, Foshan University, Foshan 528231, China.
Background: is a member of the lactic acid bacterium group commonly found in many salt-fermented foods. Strains of isolated from high-salinity environments have been shown to tolerate salt stress to some extent. However, the specific responses and mechanisms of under salt stress are not fully understood.
View Article and Find Full Text PDFJ Xenobiot
December 2024
Department of Physics, Faculty of Science, Ibn Tofail University, Kenitra 14000, Morocco.
The Silway River has historically failed to meet safe fecal coliform levels due to improper waste disposal. The river mouth is located in General Santos City, the tuna capital of the Philippines and a leading producer of hogs, cattle, and poultry. The buildup of contaminants due to direct discharge of waste from chicken farms and existing water quality conditions has led to higher fecal matter in the Silway River.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
This study characterized an endophytic fungus, DJE2023, isolated from healthy banana sucker of the cultivar (cv.) Dajiao. Its potential as a biocontrol agent against banana Fusarium wilt was assessed, aiming to provide a novel candidate strain for the biological control of the devastating disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!