Two substituted aromatic carbonyl compounds (compounds 1 and 2) of 4-aminoantipyrine were synthesized by condensation of fluorine substituted benzoyl chlorides and 4-aminoantipyrine. The structures of synthesized derivatives were established on the basis of UV-Vis, IR, and Mass, (1)H, (13)C NMR and Fluorescence spectroscopy. Both compounds showed significant fluorescence emission and two broad emission bands were observed in the region at 340 nm and 450 nm on excitation at 280 nm. Theoretically to prove that the molecule has anticancer activity against cervical cancer cells, the compounds were analyzed for molecular docking interactions with HPV16-E7 target protein by Glide protocol. Furthermore, 4-aminoantipyrine derivatives were evaluated for their in vitro cytotoxic activity against human cervical cancer cells (SiHa) by MTT assay. Compound 1 showed two fold higher activity (IC50=0.912 μM) over compound 2, and its activity was similar to that of Pazopanib, suggesting that although the two compounds were chemically very similar the difference in substituent on the phenyl moiety caused changes in properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2015.08.008 | DOI Listing |
J Genet Eng Biotechnol
March 2025
Centre for Bioinformatics, M.D. University, Rohtak, Haryana, India. Electronic address:
The emergence of multidrug resistanceagainst several antifungal drugs and the absence of alternate therapy limits the treatment choices leading to the spread of Candida auris infections, especially inimmunocompromised patients. This work aims to construct the multi-epitope vaccine using an immuno-informatics approachdue to the lack of efficient treatments for C. auris.
View Article and Find Full Text PDFJ Genet Eng Biotechnol
March 2025
Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; WHO Collaborating Center for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Khon Kaen University, Khon Kaen 40002, Thailand. Electronic address:
Background: Benzimidazole resistance is an emerging challenge among parasitic helminths. It is caused by single nucleotide polymorphisms (SNPs) in specific loci in helminths' β-tubulin genes. Field studies and laboratory investigations reported resistance-associated SNPs in 4 codon locations with 7 allelic variations among hookworms.
View Article and Find Full Text PDFBackground: Cancer cells display oxidative metabolic dysregulation to fulfill their bioenergy requirements. Specifically, efforts were made to regulate the metabolite succinate and its negative effects as an inducer for neoplasm invasion and metastasis.
Methods: Binding affinity of naringenin (NAR) to mitochondria complex II (CΙΙ) subunits, sirtuin3 (SIRT3), tumor necrosis factor associate protein 1(TRAP1), and succinate receptor (SUCNR1) was studied by molecular docking.
J Genet Eng Biotechnol
March 2025
Department of Bioinformatics, University of North Bengal, District-Darjeeling, West Bengal 734013, India. Electronic address:
Background: Acquired Immunodeficiency Syndrome (AIDS) is a critical global health issue caused by the human immunodeficiency virus (HIV). It has different strains and subtypes; among these, Subtype C accounts for higher infection rates than others. Despite its high prevalence, the molecular interactions with host receptors, specifically CD4, have not yet been explored.
View Article and Find Full Text PDFJ Genet Eng Biotechnol
March 2025
Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India. Electronic address:
Background: Cancer remains an awful challenge, despite years of targeting proteins to control its relentless growth and spread. Fungal metabolites, a treasure of natural chemicals, offer a glimmer of hope. Telomeres, the cellular "caps," are a focal point in cancer research.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!