Methane oxidation potential of boreal landfill cover materials: The governing factors and enhancement by nutrient manipulation.

Waste Manag

Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FIN-33101 Tampere, Finland. Electronic address:

Published: December 2015

Methanotrophs inhabiting landfill covers are in a crucial role in mitigating CH4 emissions, but the characteristics of the cover material or ambient temperature do not always enable the maximal CH4 oxidation potential (MOP). This study aimed at identifying the factors governing MOPs of different materials used for constructing biocovers and other cover structures. We also tested whether the activity of methanotrophs could be enhanced at cold temperature (4 and 12°C) by improving the nutrient content (NO3(-), PO4(3-), trace elements) of the cover material. Compost samples from biocovers designed to support CH4 oxidation were exhibiting the highest MOPs (4.16 μmol CH4 g dw(-1) h(-1)), but also the soil samples collected from other cover structures were oxidising CH4 (0.41 μmol CH4 g dw(-1) h(-1)). The best predictors for the MOPs were the NO3(-) content and activity of heterotrophic bacteria at 72.8%, which were higher in the compost samples than in the soil samples. The depletion of NO3(-) from the landfill cover material limiting the activity of methanotrophs could not be confirmed by the nutrient manipulation assay at 4°C as the addition of nitrogen decreased the MOPs from 0.090 μmol CH4 g dw(-1) h(-1) to <0.085 μmol CH4 g dw(-1) h(-1). At 12°C, all nutrient additions reduced the MOPs. The inhibition was believed to result from high ionic concentration caused by nutrient addition. At 4°C, the addition of trace elements increased the MOPs (>0.096 μmol CH4 g dw(-1)h(-1)) suggesting that this was attributable to stimulation of the enzymatic activity of the psychrotolerant methanotrophs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2015.08.011DOI Listing

Publication Analysis

Top Keywords

μmol ch4
16
cover material
12
ch4 dw-1
12
dw-1 h-1
12
oxidation potential
8
landfill cover
8
nutrient manipulation
8
ch4
8
ch4 oxidation
8
cover structures
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!