AI Article Synopsis

  • PGK1 is believed to play a significant role in the metastatic spread of gastric cancer and impacts tumor stem cells, which are linked to treatment resistance and recurrence.
  • In experiments with human gastric adenocarcinoma cell lines, PGK1 was inhibited using a specific RNA method, and the effects of chemotherapy drugs 5-FU and mitomycin were tested.
  • The findings revealed that inhibiting PGK1 significantly increased cell sensitivity to these chemotherapeutic agents, suggesting it could help overcome resistance in gastric cancer treatments.

Article Abstract

Background And Objectives: It can be assumed that PGK1 is involved in metastatic spread of gastric carcinomas. Furthermore PGK1 has a proven influence on the characteristics of tumor stem cells. The presence of malignant stem cells, regarding treatment resistance and recurrence, is of considerable importance. We hypothesized that inhibition of PGK1 makes these cells more sensitive to chemotherapeutic agents and therefore mediates an overcome of the existing therapy resistance.

Methods: All investigations were performed with human gastric adenocarcinoma cell lines. Small hairpin RNA knockdown of PGK1 via adenovirus-shPGK1 was used for PGK1-inhibition. Chemotherapeutic agents were 5-FU and mitomycin. FACS, qRT-PCR, and xCELLigence were performed.

Results: Using the medium-sole-control indicating the highest cell viability and Triton indicating the lowest, mitomycin and 5-FU alone showed a significant decrease in cell viability. The treatment with AdvshPGK1 alone already showed a better decrease. The simultaneous application of chemotherapeutics and adenovirus showed the strongest effect and is comparable to the effect of Triton.

Conclusions: We showed a significant decrease in cell viability after the simultaneous application of chemotherapeutics and adenovirus. These results suggest that PGK1-inhibition is able to increase the vulnerability of gastric cancer cells and tumor stem cells to overcome the chemotherapeutic therapy resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijsu.2015.08.020DOI Listing

Publication Analysis

Top Keywords

stem cells
12
cell viability
12
therapy resistance
8
gastric cancer
8
tumor stem
8
chemotherapeutic agents
8
decrease cell
8
simultaneous application
8
application chemotherapeutics
8
chemotherapeutics adenovirus
8

Similar Publications

Objective: This study aims to explore the potential role of mesenchymal stem cells (MSCs) in the treatment of osteoarthritis (OA), particularly the function of the NOTCH1 signaling pathway in maintaining the stemness of MSCs and in chondrocyte differentiation.

Methods: Utilizing diverse analytical techniques on an osteoarthritis dataset, we unveil distinct gene expression patterns and regulatory relationships, shedding light on potential mechanisms underlying the disease. Techniques used include the culture of MSCs, induction of differentiation into chondrocytes, establishment of stable cell lines, Western Blot, and immunofluorescence.

View Article and Find Full Text PDF

Risk analysis of cardiovascular toxicity in patients with lymphoma treated with CD19 CAR T cells.

J Transl Med

January 2025

Department of Hematology Oncology, Affiliated Hospital of Guizhou Medical University, No. 4 Bei Jing Road, Yunyan District, Guiyang, 550004, Guizhou, China.

Background: Anti-CD19 chimeric antigen receptor (CAR) T cell therapy is a common, yet highly efficient, cellular immunotherapy for lymphoma. However, many recent studies have reported on its cardiovascular (CV) toxicity. This study analyzes the cardiotoxicity of CD19 CAR T cell therapy in the treatment of lymphoma for providing a more valuable reference for clinicians.

View Article and Find Full Text PDF

CYP3A5 promotes glioblastoma stemness and chemoresistance through fine-tuning NAD/NADH ratio.

J Exp Clin Cancer Res

January 2025

School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China.

Background: Glioblastoma multiforme (GBM) exhibits a cellular hierarchy with a subpopulation of stem-like cells known as glioblastoma stem cells (GSCs) that drive tumor growth and contribute to treatment resistance. NAD(H) emerges as a crucial factor influencing GSC maintenance through its involvement in diverse biological processes, including mitochondrial fitness and DNA damage repair. However, how GSCs leverage metabolic adaptation to obtain survival advantage remains elusive.

View Article and Find Full Text PDF

KDM6A facilitates Xist upregulation at the onset of X inactivation.

Biol Sex Differ

January 2025

Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA.

Background: X chromosome inactivation (XCI) is a female-specific process in which one X chromosome is silenced to balance X-linked gene expression between the sexes. XCI is initiated in early development by upregulation of the lncRNA Xist on the future inactive X (Xi). A subset of X-linked genes escape silencing and thus have higher expression in females, suggesting female-specific functions.

View Article and Find Full Text PDF

Hematopoietic stem cell transplantation (HSCT) is a highly effective therapy for malignant blood illnesses that pose a high risk, as well as diseases that are at risk due to other variables, such as genetics. However, the prevalence of graft-versus-host disease (GVHD) has impeded its widespread use. Ensuring the stability of microbial varieties and associated metabolites is crucial for supporting metabolic processes, preventing pathogen intrusion, and modulating the immune system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!