Introduction: Wnt/β-catenin signaling activation has been reported only during the late steps of Barrett's esophagus (BE) neoplastic progression, but not in BE metaplasia, based on the absence of nuclear β-catenin. However, β-catenin transcriptional activity has been recorded in absence of robust nuclear accumulation. Thus, we aimed to investigate the Wnt/β-catenin signaling in nondysplastic BE.
Methods: Esophageal tissues from healthy and BE patients without dysplasia were analyzed for Wnt target gene expression by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunohistochemistry. Esophageal squamous (EPC1-& EPC2-hTERT), BE metaplastic (CP-A), and adenocarcinoma (OE33) cell lines were characterized for Wnt activation by qRT-PCR, Western blot, and luciferase assay. Wnt activity regulation was examined by using recombinant Wnt3a and Dickkopf-1 (Dkk1) as well as Dkk1 short interfering RNA.
Results: Wnt target genes (AXIN2, c-MYC, Cyclin D1, Dkk1) and Wnt3a were significantly upregulated in nondysplastic BE compared with squamous mucosa. Elevated levels of dephosphorylated β-catenin were detected in nondysplastic BE. Nuclear active β-catenin and TOPflash activity were increased in CP-A and OE33 cells compared with squamous cells. Wnt3a-mediated β-catenin signaling activation was abolished by Dkk1 in CP-A cells. TOPFlash activity was elevated following Dkk1 silencing in CP-A but not in OE33 cells. Dysplastic and esophageal adenocarcinoma tissues demonstrated further Dkk1 and AXIN2 overexpression.
Conclusions: Despite the absence of robust nuclear accumulation, β-catenin is transcriptionally active in nondysplastic BE. Dkk1 overexpression regulates β-catenin signaling in BE metaplastic but not in adenocarcinoma cells, suggesting that early perturbation of Dkk1-mediated signaling suppression may contribute to BE malignant transformation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4547437 | PMC |
http://dx.doi.org/10.1016/j.neo.2015.07.006 | DOI Listing |
Molecules
December 2024
Centre of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia.
Wnt (wingless-type MMTV integration site family) signaling is an evolutionary conserved system highly active during embryogenesis, but in adult hearts has low activities under normal conditions. It is essential for a variety of physiological processes including stem cell regeneration, proliferation, migration, cell polarity, and morphogenesis, thereby ensuring homeostasis and regeneration of cardiac tissue. Its dysregulation and excessive activation during pathological conditions leads to morphological and functional changes in the heart resulting in impaired myocardial regeneration under pathological conditions such as myocardial infarction, heart failure, and coronary artery disease.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Pediatrics, Hadassah-Hebrew University Medical Center, Jerusalem 9166100, Israel.
Inflammatory bowel disease (IBD) is a chronic, relapsing inflammation disorder of the gastrointestinal tract characterized by disrupted intestinal epithelial barrier function. Despite advances in treatment, including biological agents, achieving sustained remission remains challenging for many patients with IBD. This highlights the urgent need for novel therapeutic strategies.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Oral and Maxillofacial Plastic Surgery, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany.
The regulator of the canonical Wnt pathway, leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5), is expressed in the stem cell compartment of several tissues and overexpressed in different human carcinomas. The isoform of the stem cell marker LGR5, named LGR5Δ5 and first described by our group, is associated with prognosis and metastasis in oral squamous cell carcinoma (OSCC) and soft tissue sarcoma (STS). In a proof-of-principle analysis, the function of LGR5Δ5 was investigated in HEK293T cells, a model cell line of the Wnt pathway, compared to full-length LGR5 (FL) expression.
View Article and Find Full Text PDFCells
December 2024
Laboratoire de Biologie du Développement, LBD, CNRS UMR7622, INSERM U1156, Sorbonne Université, F-75005 Paris, France.
The formation of the embryonic left-right axis is a fundamental process in animals, which subsequently conditions both the shape and the correct positioning of internal organs. During vertebrate early development, a transient structure, known as the left-right organizer, breaks the bilateral symmetry in a manner that is critically dependent on the activity of motile and immotile cilia or asymmetric cell migration. Extensive studies have partially elucidated the molecular pathways that initiate left-right asymmetric patterning and morphogenesis.
View Article and Find Full Text PDFCells
December 2024
The National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Provincial Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China.
Tripartite motif (TRIM) family proteins, distinguished by their N-terminal region that includes a Really Interesting New Gene (RING) domain with E3 ligase activity, two B-box domains, and a coiled-coil region, have been recognized as significant contributors in carcinogenesis, primarily via the ubiquitin-proteasome system (UPS) for degrading proteins. Mechanistically, these proteins modulate a variety of signaling pathways, including Wnt/β-catenin, PI3K/AKT, and TGF-β/Smad, contributing to cellular regulation, and also impact cellular activities through non-signaling mechanisms, including modulation of gene transcription, protein degradation, and stability via protein-protein interactions. Currently, growing evidence indicates that TRIM proteins emerge as potential regulators in gastric cancer, exhibiting both tumor-suppressive and oncogenic roles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!